DSA 595 Bayesian computations for machine learning Problem set 1

January 15, 2025

- 1. Derive the posterior distribution for p based on a sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{binomial}(n, p)$, and the prior distribution $p \sim \operatorname{beta}(a, b)$. Assume n, a, b are fixed and known.
- 2. Derive the posterior distribution for λ based on a sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$, and the prior distribution $\lambda \sim \text{gamma}(\alpha, \beta)$. Assume n, α, β are fixed and known.
- 3. Derive the posterior distribution for μ based on a sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{normal}(\mu, \sigma^2)$, and the prior distribution $\mu \sim \operatorname{normal}(\mu_0, \sigma_0^2)$. Assume $n, \sigma^2, \mu_0, \sigma_0^2$ are fixed and known.
- 4. Derive the posterior distribution for σ^2 based on a sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{normal}(\mu, \sigma^2)$, and the prior distribution $\sigma^2 \sim \operatorname{inverse-gamma}(\alpha, \beta)$. Assume $n, \mu, \mu_0, \sigma_0^2$ are fixed and known.
- 5. Derive the posterior distribution for θ based on a sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{uniform}(0, \theta)$, and the prior distribution $\theta \sim \operatorname{Pareto}(m, \alpha)$. Assume n, m, α are fixed and known.