DSA 595 Bayesian computations for machine learning Problem set 10

April 9, 2025

Monte Carlo experiments.

- 1. Use a Monte Carlo approximation to evaluate P(X > .5) for $X \sim uniform(0, 1)$ (hint: write the probability as an expectation of an indicator function). Approximately how many Monte Carlo samples do you need to approximate the true value of P(X > .5) to 4 decimal places?
- 2. Law of large number (commonly abbreviated "LLN") results establish that sample means of independent and identically distributed (commonly abbreviated "iid") random variables X₁,..., X_n (with E(|X_i|) < ∞) converge to the common mean µ := E(X_i) as n → ∞. Generate synthetic data sets from 3 different probability distributions and verify that the LLN holds. In each case, approximately how large does n need to be to approximate µ within 4 decimal places of the sample mean?
- 3. Central limit theorem (commonly abbreviated "CLT") results establish that sample means of iid random variables X_1, \ldots, X_n (with a finite second moment), when properly scaled, converge *in distribution* to a Gaussian distribution; precisely,

$$\sqrt{n}(\overline{X}_n - \mu) \longrightarrow \mathcal{N}(0, \sigma^2),$$

as $n \to \infty$, where $\mu := E(X_i)$ and $\sigma^2 := E[(X_i - \mu)^2]$. Generate synthetic data sets from 3 different non-Gaussian probability distributions and verify that the CLT holds by overlaying the N(0, σ^2) density function on top of a histogram of the synthetic data.