DSA 595 Bayesian computations for machine learning Problem set 6

February 26, 2025

1. Derive the likelihood function for data drawn independently from the logistic regression model:

$$Y_i \mid \beta \sim \operatorname{Bernoulli}\left(\frac{1}{1+e^{-x_i\beta}}\right),$$

for $i \in \{1, \ldots, n\}$, where $\beta, x_i \in \mathbb{R}$.

- 2. Taking the prior distribution on β to be normal $(0, \tau^2)$, derive the kernel of the posterior distribution of β .
- 3. Write a Metropolis-Hastings algorithm to draw samples from the posterior $\pi(\beta \mid y_1, \ldots, y_n)$. Generate synthetic data from the logistic regression model, for some fixed choice of β , and some fixed covariate values x_1, \ldots, x_n (you can generate these as well, but then they are regarded as fixed).
- 4. Write code to compute the Gelman-Rubin statistic given in lecture, and then use it to assess/diagnose convergence of your MCMC algorithm in the previous problem.