ST 495 Advanced computing for statistical methods Homework problem set 8

April 2, 2024

No R packages are permitted for use in this assignment.

- 1. Derive a confidence interval for λ based on a random sample $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \exp(\lambda)$. Design and implement a simulation study to demonstrate that the confidence interval achieves its nominal 1α level coverage for $\alpha \in \{.01, .02, \ldots, .99\}$. Display the nominal versus empirical coverage as a scatter plot.
- 2. Derive a confidence interval for the intercept β_0 based on the simple linear regression model $Y_i = \beta_0 + \beta_1 x_i + U_i$, for $i \in \{1, ..., n\}$, where $U_1, ..., U_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Assume σ^2 is known. Design and implement a simulation study to demonstrate that the confidence interval achieves its nominal 1α level coverage for $\alpha \in \{.01, .02, ..., .99\}$. Display the nominal versus empirical coverage as a scatter plot.
- 3. Repeat problem 2, but with σ^2 unknown. You will need to first construct an unbiased estimator for σ^2 .
- 4. Derive a confidence interval for β_1 in problem 2, but with σ^2 unknown (recall that we did this in lecture for σ^2 known). Design and implement a simulation study to demonstrate that the confidence interval achieves its nominal 1α level coverage for $\alpha \in \{.01, .02, ..., .99\}$. Display the nominal versus empirical coverage as a scatter plot.
- 5. Derive a prediction interval for $Y_{n+1} \sim N(x'_{n+1}\beta, \sigma^2)$, assuming σ^2 is unknown, based on the linear regression model $Y \sim N_n(X\beta, \sigma^2 I_n)$ with $X \in \mathbb{R}^{n \times p}$ and rank(X) = p. Recall from lecture that such an interval was derived in the case of σ^2 known. Design and implement a simulation study to demonstrate that the prediction interval achieves its nominal 1α level coverage for $\alpha \in \{.01, .02, ..., .99\}$. Display the nominal versus empirical coverage as a scatter plot.