ST 502 MIDTERM 2

November 18, 2019

NAME:

STUDENT ID:

- You have 75 minutes to complete this exam.
- This is a closed book, closed notes exam. The use of a calculator or computer is NOT permitted.
- Please show all of your work. For this exam, the steps taken to arrive at a particular solution are more important than the final answer.

1. Assume that $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{binomial}(n, p)$. Recall that the mass function for the $\operatorname{binomial}(n, p)$ distribution is

$$
f(x \mid n, p)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

(a) (3 points) Give an expression for the likelihood function of this data set.

Solution:

$$
L(p)=\prod_{i=1}^{n} f\left(x_{i} \mid n, p\right)=\prod_{i=1}^{n}\binom{n}{x_{i}} p^{x_{i}}(1-p)^{n-x_{i}}=p^{n \bar{x}_{n}}(1-p)^{n\left(n-\bar{x}_{n}\right)} \prod_{i=1}^{n}\binom{n}{x_{i}}
$$

(b) (3 points) Show that $p \sim \operatorname{beta}(a, b)$ is the conjugate prior for this likelihood. What is the posterior distribution (i.e., the distribution and its parameters)? Recall that the density function for the beta (a, b) distribution is

$$
f(x \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}
$$

for $x \in(0,1), a>0$, and $b>0$.

Solution:

$$
\begin{aligned}
\pi\left(p \mid x_{1}^{n}\right) & \propto p^{n \bar{x}_{n}}(1-p)^{n\left(n-\bar{x}_{n}\right)} \cdot p^{a-1}(1-p)^{b-1} \\
& =p^{n \bar{x}_{n}+a-1}(1-p)^{n\left(n-\bar{x}_{n}\right)+b-1}
\end{aligned}
$$

which is the probability density kernel for the $\operatorname{beta}\left(n \bar{x}_{n}+a, n\left(n-\bar{x}_{n}\right)+b\right)$ distribution.
(c) (3 points) Derive the posterior mean of p (i.e., $\left.\mathrm{E}\left(p \mid x_{1}^{n}\right)\right)$.

Solution:

$$
\begin{aligned}
\mathrm{E}\left(p \mid x_{1}^{n}\right) & =\int_{0}^{1} p \cdot \pi\left(p \mid x_{1}^{n}\right) d p \\
& =\int_{0}^{1} p \cdot \frac{\Gamma\left(a+n^{2}+b\right)}{\Gamma\left(n \bar{x}_{n}+a\right) \Gamma\left(n\left(n-\bar{x}_{n}\right)+b\right)} p^{n \bar{x}_{n}+a-1}(1-p)^{n\left(n-\bar{x}_{n}\right)+b-1} d p \\
& =\frac{\Gamma\left(a+n^{2}+b\right)}{\Gamma\left(n \bar{x}_{n}+a\right)} \frac{\Gamma\left(n \bar{x}_{n}+a+1\right)}{\Gamma\left(a+n^{2}+1+b\right)} \cdot 1 \\
& =\frac{n \bar{x}_{n}+a}{a+n^{2}+b} .
\end{aligned}
$$

2. The U-quadratic $(0, \beta)$ distribution is defined for $x \in[0, \beta]$, and has density function

$$
f(x \mid \beta) \propto\left(x-\frac{\beta}{2}\right)^{2}
$$

(a) (3 points) Determine the normalizing constant that makes this a proper density function.

Solution:

$$
\begin{aligned}
\int_{0}^{\beta}\left(x-\frac{\beta}{2}\right)^{2} d x & =\int_{0}^{\beta}\left(x-\frac{\beta}{2}\right)^{2} d x \\
& =\int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} u^{2} d u \\
& =\left.\frac{u^{3}}{3}\right|_{-\frac{\beta}{2}} ^{\frac{\beta}{2}} \\
& =\frac{\beta^{3}}{12}
\end{aligned}
$$

Hence,

$$
f(x \mid \beta)=\frac{12}{\beta^{3}}\left(x-\frac{\beta}{2}\right)^{2}
$$

(b) (3 points) Suppose that $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ U-quadratic $(0, \beta)$. Derive the method of moments estimator of β.

Solution: First observe that

$$
\begin{aligned}
\mathrm{E}(X) & =\int_{0}^{\beta} x \frac{12}{\beta^{3}}\left(x-\frac{\beta}{2}\right)^{2} d x \\
& =\frac{12}{\beta^{3}} \int_{0}^{\beta} x^{3}-2 x^{2} \frac{\beta}{2}+x\left(\frac{\beta}{2}\right)^{2} d x \\
& =\frac{12}{\beta^{3}}\left(\frac{x^{4}}{4}-x^{3} \frac{\beta}{3}+\left.x^{2} \frac{\beta^{2}}{8}\right|_{0} ^{\beta}\right) \\
& =\frac{\beta}{2}
\end{aligned}
$$

Then the method of moments estimator of β is obtained by setting $\bar{x}_{n}=\mathrm{E}(X)$. Thus,

$$
\widehat{\beta}_{\text {mom }}=2 \bar{x}_{n}
$$

3. Suppose that $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{geometric}(p)$. Recall that if $X \sim \operatorname{geometric}(p)$, then X has mass function

$$
f(x \mid p)=p(1-p)^{x-1}
$$

for $x \in\{1,2, \ldots\}$, and $\mathrm{E}(X)=\frac{1}{p}$ and $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.
(a) (3 points) Derive the MLE of p.

Solution:

The log-likelihood is

$$
l(p)=n \log (p)+n\left(\bar{x}_{n}-1\right) \log (1-p) .
$$

Setting the first derivative (with respect to p) equal to zero gives,

$$
\begin{aligned}
\frac{n}{p}-\frac{n\left(\bar{x}_{n}-1\right)}{1-p} & =0 \\
n(1-p) & =n p\left(\bar{x}_{n}-1\right) \\
\widehat{p}_{m l e} & =\frac{1}{\bar{x}_{n}}
\end{aligned}
$$

(b) (3 points) Prove that the MLE from part (a) is a consistent estimator of p. That is, show that $\widehat{p} \xrightarrow{P} p$ as $n \rightarrow \infty$. Hint: use the fact that $\bar{X}_{n} \geq 1$ (since each $X_{i} \geq 1$).

Solution:

Let $\varepsilon>0$, and observe that

$$
\begin{aligned}
P(|\widehat{p}-p|>\varepsilon) & =P\left(\left|\frac{1}{\bar{X}_{n}}-p\right|>\varepsilon\right) \\
& =P\left(\frac{p}{\bar{X}_{n}}\left|\frac{1}{p}-\bar{X}_{n}\right|>\varepsilon\right) .
\end{aligned}
$$

Then since $\bar{X}_{n} \geq 1$ it follows that $\frac{1}{X_{n}} \leq 1$, and so

$$
\begin{aligned}
P(|\widehat{p}-p|>\varepsilon) & \leq P\left(p\left|\frac{1}{p}-\bar{X}_{n}\right|>\varepsilon\right) \\
& =P\left(p^{2}\left(\frac{1}{p}-\bar{X}_{n}\right)^{2}>\varepsilon^{2}\right) \\
& \leq \frac{p^{2}}{\varepsilon^{2}} \mathrm{E}\left[\left(\frac{1}{p}-\bar{X}_{n}\right)^{2}\right], \text { by Markov's inequality } \\
& =\frac{p^{2}}{\varepsilon^{2}} \operatorname{Var}\left(\bar{X}_{n}\right), \text { since } \mathrm{E}\left(\bar{X}_{n}\right)=\mathrm{E}(X)=\frac{1}{p} \\
& =\frac{p^{2}}{\varepsilon^{2}} \frac{1-p}{n p^{2}} \\
& =\frac{1-p}{n \varepsilon^{2}} \longrightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
(c) (3 points) Derive the asymptotic variance of the MLE. Recall that

$$
\mathrm{I}(p)=-\mathrm{E}\left(\frac{\partial^{2}}{\partial p^{2}} \log (f(X \mid p))\right) .
$$

Solution:

The Fisher Information for the geometric likelihood function is

$$
\begin{aligned}
\mathrm{I}_{n}(p) & =-\mathrm{E}\left(\frac{\partial^{2}}{\partial p^{2}} \log \left(f\left(X_{1}^{n} \mid p\right)\right)\right) \\
& =-\mathrm{E}\left(\frac{\partial}{\partial p}\left[\frac{n}{p}-\frac{n\left(\bar{X}_{n}-1\right)}{1-p}\right]\right) \\
& =-\mathrm{E}\left(\frac{-n}{p^{2}}-\frac{n\left(\bar{X}_{n}-1\right)}{(1-p)^{2}}\right) \\
& =\frac{n}{p^{2}}+\frac{n(1 / p-1)}{(1-p)^{2}} \\
& =\frac{n}{p}\left(\frac{1}{p}+\frac{1}{(1-p)}\right) \\
& =\frac{n}{p^{2}(1-p)} .
\end{aligned}
$$

Thus, the asymptotic variance of the MLE is

$$
\frac{1}{\mathrm{I}_{n}(p)}=\frac{p^{2}(1-p)}{n} .
$$

(d) (3 points) Provide an approximate $1-\alpha$ confidence interval for p.

Solution:

Using the large sampling behavior of the MLE (theorem from class) and the answers to the previous parts, an approximate $1-\alpha$ confidence interval for p is

$$
\left[\frac{1}{\bar{x}_{n}}-z_{1-\frac{\alpha}{2}} \sqrt{\frac{p^{2}(1-p)}{n}}, \frac{1}{\bar{x}_{n}}+z_{1-\frac{\alpha}{2}} \sqrt{\frac{p^{2}(1-p)}{n}}\right],
$$

where $z_{1-\frac{\alpha}{2}}$ is the $1-\frac{\alpha}{2}$ quantile of the standard normal distribution.

