ST 705 MIDTERM

March 2, 2023

NAME:

STUDENT ID:

- You have 75 minutes to complete this exam.
- This is a closed book, closed notes exam.
 - 1. (3 points) Let

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

Is A diagonalizable? If so, find the eigenvalues and eigenvectors of A.

- 2. (3 points) Consider the vector space, $P_3(\mathbb{R})$, of polynomials over \mathbb{R} with degree at most 3, and with the inner product $\langle f,g \rangle := \int_{-1}^{1} f(t)g(t) dt$. Beginning with the standard basis, $\{1, x, x^2, x^3\}$, construct an orthonormal basis for $P_3(\mathbb{R})$.
- 3. Consider the least squares line $y = c \cdot t + d$ corresponding to the *m* observations $(t_1, y_1), \ldots, (t_m, y_m)$.
 - (a) (3 points) Show that the normal equations take the form

$$\left\{c\left(\sum t_i^2\right) + d\left(\sum t_i\right) = \sum t_i y_i\right\} \bigcap \left\{c\left(\sum t_i\right) + md = \sum y_i\right\}$$

- (b) (3 points) Show that the least squares line must pass through the point (\bar{t}, \bar{y}) , where \bar{t} and \bar{y} are the averages of the t_i and y_i , respectively.
- 4. (a) (3 points) Show that the eigenvalues of a projection matrix are either zero or one.
 - (b) (3 points) Using the result of part (a), but without directly appealing to the fact that the rank of a matrix is equal to its number of nonzero eigenvalues, show that the rank of a projection matrix is equal to its trace.
- 5. (3 points) Show that if the least squares estimator $\lambda'\hat{\beta}$ is the same for all solutions $\hat{\beta}$ to the normal equations, then $\lambda'\beta$ is estimable.