ST 705 MIDTERM

March 2, 2023

NAME:

STUDENT ID:

- You have 75 minutes to complete this exam.
- This is a closed book, closed notes exam.

1. (3 points) Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

Is A diagonalizable? If so, find the eigenvalues and eigenvectors of A.
2. (3 points) Consider the vector space, $P_{3}(\mathbb{R})$, of polynomials over \mathbb{R} with degree at most 3 , and with the inner product $\langle f, g\rangle:=\int_{-1}^{1} f(t) g(t) d t$. Beginning with the standard basis, $\left\{1, x, x^{2}, x^{3}\right\}$, construct an orthonormal basis for $P_{3}(\mathbb{R})$.
3. Consider the least squares line $y=c \cdot t+d$ corresponding to the m observations $\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)$.
(a) (3 points) Show that the normal equations take the form

$$
\left\{c\left(\sum t_{i}^{2}\right)+d\left(\sum t_{i}\right)=\sum t_{i} y_{i}\right\} \bigcap\left\{c\left(\sum t_{i}\right)+m d=\sum y_{i}\right\}
$$

(b) (3 points) Show that the least squares line must pass through the point (\bar{t}, \bar{y}), where \bar{t} and \bar{y} are the averages of the t_{i} and y_{i}, respectively.
4. (a) (3 points) Show that the eigenvalues of a projection matrix are either zero or one.
(b) (3 points) Using the result of part (a), but without directly appealing to the fact that the rank of a matrix is equal to its number of nonzero eigenvalues, show that the rank of a projection matrix is equal to its trace.
5. (3 points) Show that if the least squares estimator $\lambda^{\prime} \widehat{\beta}$ is the same for all solutions $\widehat{\beta}$ to the normal equations, then $\lambda^{\prime} \beta$ is estimable.

