ST 705 Linear models and variance components Homework problem set 2

January 16, 2024

1. Monahan exercise A.50.
2. Let $A \in \mathbb{R}^{p \times p}$ be symmetric. Use the spectral decomposition of A to show that

$$
\sup _{x \in \mathbb{R}^{p} \backslash\{0\}} \frac{x^{\prime} A x}{x^{\prime} x}=\lambda_{\max },
$$

where $\lambda_{\max }$ is the largest eigenvalue of A. Observe that this is a special case of the Courant-Fischer theorem (see https://en.wikipedia.org/wiki/Min-max_theorem).
3. Construct an $n \times n$ matrix A such that $\lambda_{\max }(A) \neq \sup _{v \neq 0}\left\{\frac{v^{\prime} A v}{v^{\prime} v}\right\}$, where $\lambda_{\max }(\cdot)$ denotes the maximum eigenvalue of its argument. Why does your counter example not violate the Courant-Fischer theorem?
4. Let A be an $m \times n$ matrix with rank m. Prove that there exists an $n \times m$ matrix B such that $A B=I_{m}$.
5. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that $A B$ can be written as a sum of n matrices of rank at most one. Hint: think about empirical covariance matrices.
6. Let V be a finite-dimensional inner product space over \mathbb{C}, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis for V.
(a) Show that for any $x, y \in V$,

$$
\langle x, y\rangle=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle \overline{\left\langle y, v_{i}\right\rangle} .
$$

This is called Parseval's identity.
(b) For $V=\mathbb{R}^{2}$ use Parseval's identity to prove the Pythagorean theorem. Generalize this result to \mathbb{R}^{n}.
7. Let V be an inner product space over \mathbb{C}, and let $\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ be orthonormal.
(a) Prove that for any $x \in V$,

$$
\|x\|^{2} \geq \sum_{i=1}^{n}\left|\left\langle x, v_{i}\right\rangle\right|^{2} .
$$

This is called Bessel's inequality.
(b) Show that Bessel's inequality is an equality if and only if $x \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.

