ST 705 Linear models and variance components Homework problem set 3

January 24, 2024

1. Let Σ be a $p \times p$ symmetric non-negative definite matrix, and consider the partition

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

where Σ_{11} is $k \times k$ and Σ_{22} is $(p-k) \times(p-k)$. Prove the following statements.
(a) $\operatorname{null}\left(\Sigma_{22}\right) \subseteq \operatorname{null}\left(\Sigma_{12}\right)$, where null(•) denotes the null space of a matrix argument.
(b) $\operatorname{col}\left(\Sigma_{21}\right) \subseteq \operatorname{col}\left(\Sigma_{22}\right)$, where $\operatorname{col}(\cdot)$ denotes the column space of a matrix argument.
(c) If $X \sim \mathrm{~N}_{p}(\mu, \Sigma)$ then $X_{1}-\Sigma_{12} \Sigma_{22}^{g} X_{2}$ is independent of X_{2}, where μ is a p-dimensional column vector, $X=\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{\prime}$ is a partition of the appropriate dimensions, and Σ_{22}^{g} is a generalized inverse of Σ_{22}.
2. Let S be a nonempty subset of an inner product space V. The orthogonal complement to the set S is defined as

$$
S^{\perp}:=\{x \in V:\langle x, y\rangle=0 \text { for every } y \in S\} .
$$

(a) Show that S^{\perp} is a subspace of V for any $S \subseteq V$.
(b) Let $W \subseteq V$ be a finite dimensional subspace, and let $y \in V$. Show that there exist unique vectors $u \in W$ and $z \in W^{\perp}$ such that $y=u+z$.
(c) Let $X \in \mathbb{R}^{n \times p}$. Verify that $\operatorname{col}(X)$ and $\operatorname{null}\left(X^{\prime}\right)$ are orthogonal complements.
3. Denote by W a matrix with $\operatorname{col}(W)=\operatorname{null}\left(P^{\prime}\right)$. Show that $\operatorname{null}\left(W^{\prime}\right)=\operatorname{col}(P)$.
4. Show that a $p \times p$ matrix A is symmetric and idempotent with rank s if and only if there exists a $p \times s$ matrix G with orthonormal columns such that $A=G G^{\prime}$. Note that G is called a semi-orthogonal matrix.
5. For matrices $A \in \mathbb{R}^{p \times q}$, the spectral norm is defined as,

$$
\|A\|_{2}:=\sqrt{\sup _{x \neq 0} \frac{x^{\prime} A^{\prime} A x}{x^{\prime} x}}
$$

Further, the eigenvalues of $A^{\prime} A$ are the squares of the singular values of A, so sometimes the definition of the spectral norm is expressed as

$$
\|A\|_{2}:=\sigma_{\max }(A)
$$

where $\sigma_{\max }$ denotes the largest singular value of A.
(a) Verify that the spectral norm is a norm. Recall that a norm must satisfy the following axioms for any $A, B, C \in \mathbb{R}^{p \times q}$ and any $\alpha \in \mathbb{R}$.
i. $\|\alpha A\|=|\alpha|\|A\|$
ii. $\|A+B\| \leq\|A\|+\|B\|$
iii. $\|A\| \geq 0$ with equality if and only if $A=0$.
(b) Show that the spectral norm is sub-multiplicative for square matrices. That is, for $A, B \in \mathbb{R}^{p \times p},\|A B\|_{2} \leq\|A\|_{2}\|B\|_{2}$.
6. Suppose that the $m \times n$ matrix A has the form

$$
A=\binom{A_{1}}{A_{2}}
$$

where A_{1} is an $n \times n$ nonsingular matrix, and $m>n$. Define $A^{+}:=\left(A^{\prime} A\right)^{-1} A^{\prime}$, and prove that $\left\|A^{+}\right\|_{2} \leq\left\|A_{1}^{-1}\right\|_{2}$.

