ST 705 Linear models and variance components Homework problem set 3

January 24, 2024

1. Let Σ be a $p \times p$ symmetric non-negative definite matrix, and consider the partition

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

where Σ_{11} is $k \times k$ and Σ_{22} is $(p-k) \times (p-k)$. Prove the following statements.

- (a) $\operatorname{null}(\Sigma_{22}) \subseteq \operatorname{null}(\Sigma_{12})$, where $\operatorname{null}(\cdot)$ denotes the null space of a matrix argument.
- (b) $\operatorname{col}(\Sigma_{21}) \subseteq \operatorname{col}(\Sigma_{22})$, where $\operatorname{col}(\cdot)$ denotes the column space of a matrix argument.
- (c) If $X \sim N_p(\mu, \Sigma)$ then $X_1 \Sigma_{12} \Sigma_{22}^g X_2$ is independent of X_2 , where μ is a *p*-dimensional column vector, $X = (X'_1, X'_2)'$ is a partition of the appropriate dimensions, and Σ_{22}^g is a generalized inverse of Σ_{22} .
- 2. Let S be a nonempty subset of an inner product space V. The orthogonal complement to the set S is defined as

$$S^{\perp} := \{ x \in V : \langle x, y \rangle = 0 \text{ for every } y \in S \}.$$

- (a) Show that S^{\perp} is a subspace of V for any $S \subseteq V$.
- (b) Let $W \subseteq V$ be a finite dimensional subspace, and let $y \in V$. Show that there exist **unique** vectors $u \in W$ and $z \in W^{\perp}$ such that y = u + z.
- (c) Let $X \in \mathbb{R}^{n \times p}$. Verify that col(X) and null(X') are orthogonal complements.
- 3. Denote by W a matrix with col(W) = null(P'). Show that null(W') = col(P).
- 4. Show that a $p \times p$ matrix A is symmetric and idempotent with rank s if and only if there exists a $p \times s$ matrix G with orthonormal columns such that A = GG'. Note that G is called a *semi-orthogonal* matrix.

5. For matrices $A \in \mathbb{R}^{p \times q}$, the *spectral* norm is defined as,

$$||A||_2 := \sqrt{\sup_{x \neq 0} \frac{x'A'Ax}{x'x}}$$

Further, the eigenvalues of A'A are the squares of the *singular values* of A, so sometimes the definition of the spectral norm is expressed as

$$||A||_2 := \sigma_{\max}(A),$$

where σ_{max} denotes the largest singular value of A.

- (a) Verify that the spectral norm is a norm. Recall that a norm must satisfy the following axioms for any $A, B, C \in \mathbb{R}^{p \times q}$ and any $\alpha \in \mathbb{R}$.
 - i. $\|\alpha A\| = |\alpha| \|A\|$
 - ii. $||A + B|| \le ||A|| + ||B||$
 - iii. $||A|| \ge 0$ with equality if and only if A = 0.
- (b) Show that the spectral norm is sub-multiplicative for square matrices. That is, for $A, B \in \mathbb{R}^{p \times p}, \|AB\|_2 \leq \|A\|_2 \|B\|_2$.
- 6. Suppose that the $m \times n$ matrix A has the form

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

where A_1 is an $n \times n$ nonsingular matrix, and m > n. Define $A^+ := (A'A)^{-1}A'$, and prove that $||A^+||_2 \le ||A_1^{-1}||_2$.