ST 705 Linear models and variance components Homework problem set 4

January 31, 2024

1. Let V be a convex subset of some vector space. Recall that a function $f: V \rightarrow \mathbb{R}$ is said to be convex if for every $x, y \in V$ and every $\lambda \in[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) .
$$

Show, by definition, that the sum of squared errors function

$$
Q(\beta):=\|Y-X \beta\|_{2}^{2}
$$

is convex.
2. Let $G: \mathbb{R}^{p} \rightarrow \mathbb{R}$ defined by $G(\beta):=(y-X \beta)^{\prime} W(y-X \beta)$. Derive an expression for $\nabla_{\beta} G(\beta)$.
3. The defining property of a projection matrix A is that $A^{2}=A$ (recall the definition of the square of a matrix from your linear algebra course). Establish the following facts.
(a) If A is a projection matrix, then all of its eigenvalues are either zero or one.
(b) If $A \in \mathbb{R}^{p \times p}$ is a projection and symmetric (i.e., an orthogonal projection matrix), then for every vector v the projection $A v$ is orthogonal to $v-A v$.
(c) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
(d) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
4. Show that if $\operatorname{rank}(B C)=\operatorname{rank}(B)$, then $\operatorname{col}(B C)=\operatorname{col}(B)$, where $\operatorname{col}(\cdot)$ denotes the column space.
5. Let $A \in \mathbb{R}^{n \times p}$ with $\operatorname{rank}(A)=p$. Further, suppose $X \in \mathbb{R}^{n \times q}$ with $\operatorname{col}(X)=\operatorname{col}(A)$. Show that there exists a unique matrix S so that $X=A S$.
6. Let $A \in \mathbb{R}^{n \times p}$.
(a) Prove that if A^{g} is a generalized inverse of A (i.e., only satisfying $A A^{g} A=A$), then $\left(A^{g}\right)^{\prime}$ is a generalized inverse of A^{\prime}. Conclude from this fact that $P_{X}:=X\left(X^{\prime} X\right)^{g} X^{\prime}$ is symmetric.
(b) Prove the existence and uniqueness of the Moore-Penrose generalized inverse, usually denoted A^{+}, of A.
(c) Show that if A has full column rank, then $A^{+}=\left(A^{\prime} A\right)^{-1} A^{\prime}$.
(d) Show that if A has full row rank, then $A^{+}=A^{\prime}\left(A A^{\prime}\right)^{-1}$.

