ST 705 Linear models and variance components Homework problem set 4

January 31, 2024

1. Let V be a convex subset of some vector space. Recall that a function $f: V \to \mathbb{R}$ is said to be *convex* if for every $x, y \in V$ and every $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Show, by definition, that the sum of squared errors function

$$Q(\beta) := \|Y - X\beta\|_2^2$$

is convex.

- 2. Let $G: \mathbb{R}^p \to \mathbb{R}$ defined by $G(\beta) := (y X\beta)'W(y X\beta)$. Derive an expression for $\nabla_{\beta}G(\beta)$.
- 3. The defining property of a projection matrix A is that $A^2 = A$ (recall the definition of the square of a matrix from your linear algebra course). Establish the following facts.
 - (a) If A is a projection matrix, then all of its eigenvalues are either zero or one.
 - (b) If $A \in \mathbb{R}^{p \times p}$ is a projection and symmetric (i.e., an orthogonal projection matrix), then for every vector v the projection Av is orthogonal to v Av.
 - (c) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.
 - (d) tr(AB) = tr(BA).
- 4. Show that if $\operatorname{rank}(BC) = \operatorname{rank}(B)$, then $\operatorname{col}(BC) = \operatorname{col}(B)$, where $\operatorname{col}(\cdot)$ denotes the column space.
- 5. Let $A \in \mathbb{R}^{n \times p}$ with rank(A) = p. Further, suppose $X \in \mathbb{R}^{n \times q}$ with col(X) = col(A). Show that there exists a unique matrix S so that X = AS.
- 6. Let $A \in \mathbb{R}^{n \times p}$.

- (a) Prove that if A^g is a generalized inverse of A (i.e., only satisfying $AA^gA = A$), then $(A^g)'$ is a generalized inverse of A'. Conclude from this fact that $P_X := X(X'X)^gX'$ is symmetric.
- (b) Prove the existence **and** uniqueness of the Moore-Penrose generalized inverse, usually denoted A^+ , of A.
- (c) Show that if A has full column rank, then $A^+ = (A'A)^{-1}A'$.
- (d) Show that if A has full row rank, then $A^+ = A'(AA')^{-1}$.