ST 705 Linear models and variance components Homework problem set 5

February 9, 2024

1. Monahan exercise 2.8.
2. Monahan exercise 2.9.
3. In lecture, we proved a lemma that $\left(X^{\prime} X\right)^{g} X^{\prime}$ is a generalized inverse of X.
(a) Verify that $X\left(X^{\prime} X\right)^{g}$ is a generalized inverse of X^{\prime}.
(b) We proved that $P_{X}:=X\left(X^{\prime} X\right)^{g} X^{\prime}$ is the unique symmetric projection onto $\operatorname{col}(X)$. Is $\left(X^{\prime} X\right)^{g} X^{\prime}$ the unique generalized inverse of X ?
4. Show that $I_{n}-P_{X}$ is the unique symmetric projection matrix onto $\operatorname{null}\left(X^{\prime}\right)$.
5. Let $X=Q R$ where Q has orthonormal columns. Prove that if $\operatorname{rank}(X)=\operatorname{rank}(Q)$, then $P_{X}=Q Q^{\prime}$.
6. Let $Q=X\left(X^{\prime} V^{-1} X\right)^{g} X^{\prime} V^{-1}$, with $V>0$ and symmetric, and show that Q is a projection onto $\operatorname{col}(X)$.
7. Prove that if a (symmetric) matrix is positive definite, then all of its eigenvalues are greater than zero.
