ST 705 Linear models and variance components Homework problem set 7

February 22, 2024

1. Monahan exercise 3.9 not necessary to do the "(More practice)" item.
2. Monahan exercise 3.24.
3. Consider the simple linear regression model $y_{i}=\beta_{0}+\beta_{1} x_{i}+u_{i}$ for $i \in\{1, \ldots, n\}$. Show that if the x_{i} are equally spaced (i.e., $x_{i}=s+t i$ for some scalars s and t), then $y_{i}=$ $\gamma_{0}+\gamma_{1} i+u_{i}$ is a reparameterization.
4. Consider the vector space, $P_{3}(\mathbb{R})$, of polynomials over \mathbb{R} with degree at most 3 , and with the inner product $\langle f, g\rangle:=\int_{-1}^{1} f(t) g(t) d t$. Beginning with the standard basis, $\left\{1, x, x^{2}, x^{3}\right\}$, construct an orthonormal basis for $P_{3}(\mathbb{R})$.
5. Suppose that $v_{1}, \ldots, v_{p} \in \mathbb{R}^{n}$ are a set of linearly independent vectors, and $w_{1}, \ldots, w_{p} \in$ \mathbb{R}^{n} are the orthogonal vectors obtained from v_{1}, \ldots, v_{p} by the Gram-Schmidt process. Furthermore, denote by u_{1}, \ldots, u_{p} the normalized vectors corresponding to w_{1}, \ldots, w_{p}, and define the matrix $R \in \mathbb{R}^{p \times p}$ by

$$
R_{i j}:= \begin{cases}\left\|w_{j}\right\| & \text { if } i=j \\ \left\langle v_{j}, u_{i}\right\rangle & \text { if } i<j \\ 0 & \text { if } i>j\end{cases}
$$

Prove that $V=U R$, where V is the matrix with columns v_{1}, \ldots, v_{p} and U is the matrix with columns u_{1}, \ldots, u_{p}.
6. In the notation of the previous problem, suppose that $p=n$. Further, assume that $V=U_{1} R_{1}=U_{2} R_{2}$, where U_{1} and U_{2} are orthogonal matrices and R_{1} and R_{2} are upper triangular. Prove that the matrix $R_{2} R_{1}^{-1}$ is orthogonal and diagonal.

