ST 705 Linear models and variance components Homework problem set 8

March 19, 2024

1. Monahan exercise 3.6.
2. Monahan exercise 3.7.
3. Prove that if $\lambda^{(1)^{\prime}} \beta, \ldots, \lambda^{(k)^{\prime}} \beta$ are estimable, then so is

$$
\sum_{j=1}^{k} d_{j} \lambda^{(j)^{\prime}} \beta,
$$

for any scalar constants d_{1}, \ldots, d_{k}.
4. Assume that $Y=X \beta+U$, where X is an $n \times p$ matrix with $\operatorname{rank}(X)=k<p$, and assume $\lambda^{\prime} \beta$ is estimable.
(a) Construct an argument to determine the rank of the matrix $\binom{X}{\lambda^{\prime}}$.
(b) Construct an argument to determine the rank of the matrix $\binom{X}{\lambda^{\prime}\left(I-P_{X^{\prime}}\right)}$.
5. Let X be an $n \times p$ matrix with $\operatorname{rank}(X)=r$, and C be a $(p-r) \times p$ matrix with $\operatorname{rank}(C)=p-r$, such that $\operatorname{col}\left(X^{\prime}\right) \cap \operatorname{col}\left(C^{\prime}\right)=\{0\}$. Show that

$$
\operatorname{rank}\binom{X}{C}=p
$$

6. Let X be an $n \times p$ matrix with $\operatorname{rank}(X)=r$, and C be a $(p-r) \times p$ matrix with $\operatorname{rank}(C)=p-r$, such that $\operatorname{col}\left(X^{\prime}\right) \cap \operatorname{col}\left(C^{\prime}\right)=\{0\}$. Show that $C\left(X^{\prime} X+C^{\prime} C\right)^{-1} C^{\prime}=I_{p-r}$.
