ST 705 Linear models and variance components Homework problem set 8

March 19, 2024

- 1. Monahan exercise 3.6.
- 2. Monahan exercise 3.7.
- 3. Prove that if $\lambda^{(1)'}\beta, \ldots, \lambda^{(k)'}\beta$ are estimable, then so is

$$\sum_{j=1}^k d_j \lambda^{(j)'} \beta,$$

for any scalar constants d_1, \ldots, d_k .

- 4. Assume that $Y = X\beta + U$, where X is an $n \times p$ matrix with rank(X) = k < p, and assume $\lambda'\beta$ is estimable.
 - (a) Construct an argument to determine the rank of the matrix $\begin{pmatrix} X \\ \lambda' \end{pmatrix}$.
 - (b) Construct an argument to determine the rank of the matrix $\begin{pmatrix} X \\ \lambda'(I P_{X'}) \end{pmatrix}$.
- 5. Let X be an $n \times p$ matrix with $\operatorname{rank}(X) = r$, and C be a $(p r) \times p$ matrix with $\operatorname{rank}(C) = p r$, such that $\operatorname{col}(X') \cap \operatorname{col}(C') = \{0\}$. Show that

$$\operatorname{rank} \begin{pmatrix} X \\ C \end{pmatrix} = p.$$

6. Let X be an $n \times p$ matrix with $\operatorname{rank}(X) = r$, and C be a $(p - r) \times p$ matrix with $\operatorname{rank}(C) = p - r$, such that $\operatorname{col}(X') \cap \operatorname{col}(C') = \{0\}$. Show that $C(X'X + C'C)^{-1}C' = I_{p-r}$.