ST 705 Linear models and variance components Homework problem set 9

March 26, 2024

- 1. Monahan exercise 3.26.
- 2. Consider the restricted linear model $Y = X\beta + U$ over the constrained parameter space $\{P'\beta = \delta\}$, for some full-column rank matrix P. Set up the Langrangian function and derive the restricted normal equations (RNE),

$$\begin{pmatrix} X'X & P \\ P' & 0 \end{pmatrix} \begin{pmatrix} \beta \\ \theta \end{pmatrix} = \begin{pmatrix} X'y \\ \delta \end{pmatrix}.$$

- 3. Monahan exercise 4.2.
- 4. Suppose that $Y_i \sim \text{Binomial}(p, n_i)$ for $i \in \{1, \ldots, N\}$, and assume that Y_1, \ldots, Y_N are independent.
 - (a) Write this as a linear model.
 - (b) Find the BLUE of p.
 - (c) Find the MLE of *p*. How does the variance of the MLE compare to the variance of the BLUE?
- 5. The problem of least squares regression can be understood as a special case of the more general problem of ridge regression. For an *n*-dimensional column vector y and an $n \times p$ design matrix X, the problem of ridge regression is to solve for the parameter vector bthat minimizes

$$a\|b\|_2^2 + \|y - Xb\|_2^2$$

where $a \ge 0$ is fixed.

- (a) Derive a closed-form expression of the ridge regression solution.
- (b) Assume that X has full column rank, and suppose that y is an observed instance of the random vector $Y = X\beta + U$, where $\beta \in \mathbb{R}^p$ is fixed and U satisfies the Gauss-Markov assumptions. Under what condition(s) is the ridge regression solution the BLUE for any β ?

- 6. Suppose that $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \text{Uniform}(0, 2\theta)$, and define $U_i := Y_i \theta$ for $i \in \{1, \ldots, n\}$.
 - (a) Find the mean and variance of $U := (U_1, \ldots, U_n)'$.
 - (b) Show that $Y := (Y_1, \ldots, Y_n)'$ is generated according to a linear model that satisfies the Gauss-Markov assumptions.
 - (c) Find the BLUE of θ , and denote the BLUE by $\hat{\theta}_{OLS}$.
 - (d) Find c so that the estimator $\hat{\theta} = cY_{(n)}$ is unbiased for θ , where $Y_{(i)}$ denotes the *i*th order statistic, and compute the variance of $\hat{\theta}$.
 - (e) Compare the variances of $\hat{\theta}_{OLS}$ and $\hat{\theta}$, and provide intuition for your finding.