ST 705 Linear models and variance components Lab practice problem set 11

April 9, 2024

1. Recall the definition of the multivariate normal distribution from class:

Definition 1 The p-dimensional random vector Y is said to follow the multivariate normal distribution with mean μ and covariance matrix Σ if for every p-dimensional vector v such that $v'\Sigma v \neq 0$,

$$v'Y \sim N(v'\mu, v'\Sigma v).$$

Denote $Y \sim N_p(\mu, \Sigma)$.

Prove that if Σ is nonsingular, then $Y \sim N_p(\mu, \Sigma)$ if and only if Y has density,

 $f(y) = \det(2\pi\Sigma)^{-\frac{1}{2}} e^{-\frac{1}{2}(y-\mu)'\Sigma^{-1}(y-\mu)}.$