ST 705 Linear models and variance components Lab practice problem set 12

April 16, 2024

1. Let $X \sim \mathrm{~N}_{p}(\mu, \Sigma)$. Show that for any partition of components, i.e.,

$$
X=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{m}
\end{array}\right), \quad \mu=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{m}
\end{array}\right), \quad \Sigma=\left(\begin{array}{ccc}
\Sigma_{11} & \cdots & \Sigma_{1 m} \\
\vdots & \ddots & \vdots \\
\Sigma_{m 1} & \cdots & \Sigma_{m m}
\end{array}\right)
$$

X_{1}, \ldots, X_{m} are mutually independent if and only if $\Sigma_{i j}=0$ for every $i \neq j$.
2. Suppose that (X, Y) has a bivariate distribution (not necessarily Gaussian) with mean $\left(\mu_{X}, \mu_{Y}\right)^{\prime}$ and covariance matrix

$$
\left(\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X, Y} \\
\sigma_{Y, X} & \sigma_{Y}^{2}
\end{array}\right)
$$

(a) Show that if $E(Y \mid X)=\beta_{0}+\beta_{1} X$, then $\beta_{1}=\sigma_{Y, X} / \sigma_{X}^{2}$ and $\beta_{0}=\mu_{Y}-\beta_{1} \mu_{X}$.
(b) Show that if $E(Y \mid X)=\beta_{0}+\beta_{1} X$ and $\operatorname{Var}(Y \mid X)=\tau^{2}$, then $\tau^{2}=\sigma_{Y}^{2}-\sigma_{Y, X}^{2} / \sigma_{X}^{2}$.

