ST 705 Linear models and variance components Lab practice problem set 2

January 16, 2024

1. Show that the covariance function defined for $X, Y \in \mathbb{R}^{p}$ by

$$
\operatorname{Cov}(X, Y):=E\left[(X-E(X))(Y-E(Y))^{\prime}\right]
$$

satisfies the following properties. For random variables $X, Y, Z \in \mathbb{R}^{p}$ with finite covariance, and any $c \in \mathbb{R}$,
(a) $\operatorname{Cov}(X+Y, Z)=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$
(b) $\operatorname{Cov}(c X, Y)=c \cdot \operatorname{Cov}(X, Y)$
(c) $\operatorname{Cov}(X, Y)^{*}=\operatorname{Cov}(Y, X)$
(d) $\operatorname{Cov}(X, X) \geq 0$ for all X, and $\operatorname{Cov}(X, X)=0$ implies that X is constant a.s.

Then, deduce that if $p=1$ the covariance is an inner product over some (quotient) vector space, and if $p>1$ the the function $f(X, Y):=\operatorname{tr}(\operatorname{Cov}(X, Y))$ is an inner product.

