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NONPENALIZED VARIABLE SELECTION IN HIGH-DIMENSIONAL
LINEAR MODEL SETTINGS VIA GENERALIZED

FIDUCIAL INFERENCE

BY JONATHAN P. WILLIAMS AND JAN HANNIG

University of North Carolina at Chapel Hill

Standard penalized methods of variable selection and parameter estima-
tion rely on the magnitude of coefficient estimates to decide which variables
to include in the final model. However, coefficient estimates are unreliable
when the design matrix is collinear. To overcome this challenge, an entirely
new perspective on variable selection is presented within a generalized fidu-
cial inference framework. This new procedure is able to effectively account
for linear dependencies among subsets of covariates in a high-dimensional
setting where p can grow almost exponentially in n, as well as in the clas-
sical setting where p ≤ n. It is shown that the procedure very naturally as-
signs small probabilities to subsets of covariates which include redundancies
by way of explicit L0 minimization. Furthermore, with a typical sparsity as-
sumption, it is shown that the proposed method is consistent in the sense that
the probability of the true sparse subset of covariates converges in probabil-
ity to 1 as n → ∞, or as n → ∞ and p → ∞. Very reasonable conditions
are needed, and little restriction is placed on the class of possible subsets of
covariates to achieve this consistency result.

1. Introduction. A strategy for developing variable selection procedures with
desirable consistency properties entails exploiting some distinguishing property of
the theoretical true data generating model. For example, standard penalized meth-
ods of variable selection within a linear model framework such as LASSO of Tib-
shirani [21], SCAD of Fan and Li [9] and the Dantzig Selector of Candes and Tao
[8] rely on the magnitude of the coefficients in the true data generating model be-
ing relatively larger than those of the other coefficients. Johnson and Rossell [13]
use this property to construct nonlocal prior densities over all subsets of covari-
ates (see also Rossell and Telesca [19] and Shin, Bhattacharya and Johnson [20]).
The defining property of their nonlocal density is that it takes the value of zero for
subsets containing a covariate with a zero-valued coefficient.

We propose a more desirable way for eliminating redundancies from the sam-
ple space of candidate subsets which does not explicitly rely on coefficient magni-
tudes. That is, any candidate true model should be nonredundant in the sense that it
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contains the minimal amount of information necessary for explaining and/or pre-
dicting the observed data. One such criterion to exploit this nonredundancy prop-
erty is that the only subsets with nonzero posterior probability should be those
which cannot be predicted to some chosen precision by a subset of fewer covari-
ates. Such a criterion requires constructing a probability distribution on the space
of candidate models, which is consistent with a Bayesian or fiducial variable se-
lection paradigm. The literature on high-dimensional linear models is vast, but we
hope to contribute to it by using this setting to build a foundation for a fresh per-
spective on variable selection.

Recent work in the Bayesian high-dimensional linear model setting includes
Ročková and George [18] who develop methods for separable and nonsepara-
ble spike-and-slab penalized estimation, the credible set approach of Bondell and
Reich [6], and Narisetty and He [16] who propose a method based on shrinking
and diffusing coefficient priors in which the variance of the priors are sample size
dependent. Lai, Hannig and Lee [14] layout framework for penalized estimation
within a GFI approach.

Ghosh and Ghattas [10] provide insights into complications in Bayesian variable
selection. Namely, the size of the sample space (2p) is often too large to compute
all model probabilities, and even typically larger than can reasonably be sampled
by Markov chain Monte Carlo (MCMC) methods. Thus, the nonlocal prior ap-
proach of Johnson and Rossell [13] can achieve asymptotic consistency (where
other approaches can only achieve asymptotic pairwise consistency) because it is
able to effectively eliminate a large enough portion of the 2p subsets from the
sample space. To illustrate this point, consider the following simple example. Let

(1) Y ∼Nn
(
β1 · x(1) + · · · + βp · x(p),σ 2In

)
,

where βj ∈ R and x(j) ∈ Rn for j ∈ {1, . . . , p}, and σ > 0. Further, suppose that
the true but unknown values of (β1,β2,β3, . . . ,βp)′ are (b1, b2,0, . . . ,0)′. Within
the nonlocal prior framework, the only subsets with nonnegligible posterior prob-
ability are contained in the set {{x(1)}, {x(2)}, {x(1), x(2)}}.

When viewed as a prior density on the coefficients, nonlocal priors assign zero
prior density to the true parameter value when the true parameter value is zero.
From a Bayesian perspective, this is philosophically problematic, but very insight-
ful for consistency of model selection. The insight lends itself to the question:
What other properties might the true model have which can be exploited to de-
velop a statistical procedure with the ability to effectively eliminate subsets from
the sample space?

In addressing this question, we build our proposed methods from the idea that
any candidate true model, as determined by the actual nonzero parameter values,
should be nonredundant in the sense that it contains the minimal amount of infor-
mation necessary for explaining and/or predicting the observed data. We denote
such subsets of the parameter space as ε-admissible, and define them precisely



GFI VARIABLE SELECTION 1725

in Definition 2.1. Then, using the above nonlocal prior example, the entire model
space of {x(1), x(2), x(3)} for instance, is not ε-admissible because it can be per-
fectly predicted by the smaller subset {x(1), x(2)}.

To further illustrate the intuition behind our proposal, consider an example
where x(2) is highly collinear with all of x(3), . . . , x(p) but is not correlated with
x(1), and where the true values of (β1,β2,β3, . . . ,βp)′ are (b1, b2, b3, . . . , bp)′

with bj ≠ 0 for all j ∈ {1, . . . , p}. In this case, assuming strong enough collinear-
ity, ∃c ∈ R with c · x(2) ≈ b2 · x(2) + · · · + bp · x(p), that is,

∥∥(
b1 · x(1) + · · · + bp · x(p)) − (

b1 · x(1) + c · x(2))∥∥ < ε,

where ε > 0 is some desired precision. Thus, for much of the parameter space the
subset {x(1), . . . , x(p)} is not ε-admissible, but would be assigned nonzero poste-
rior probability in the nonlocal prior framework.

We construct a posterior-like probability distribution over all subsets, which as-
signs negligible probability to elements that are not ε-admissible. In constructing
the posterior-like probability distribution, we adopt a generalized fiducial infer-
ence (GFI) approach because it has similar to an objective Bayes’ interpretation
with data driven priors, gives a systematic method of constructing a distribution
function given a data generating equation such as a linear model, and it does not
suffer from the issue of arbitrary normalizing constants which arise in many objec-
tive Bayesian priors (Berger and Pericchi [3]). In this manuscript, we will provide
a gentle introduction to GFI. A fuller account of GFI is given in the recent review
paper of Hannig et al. [11].

An advantage of both our approach and the nonlocal prior approach of Johnson
and Rossell [13] is that in addition to providing theoretical guarantees, our sta-
tistical procedures yield estimates of the posterior distribution over subsets of co-
variates. This is in contrast to frequentist penalization based methods or Bayesian
procedures fully dedicated to maximum a posteriori probability (MAP) estima-
tion. Such methods do not yield the posterior probability of a chosen model (i.e.,
the relative probability, given the observed data, of a given model against compet-
ing models). Furthermore, Ghosh and Ghattas [10] argue that joint summaries of
subsets of covariates are more robust to collinearity.

With our approach to constructing a posterior-like distribution whose probabil-
ity mass function value is negligible for subsets of the parameter space which are
not ε-admissible, with a typical sparsity assumption we are able to show that the
probability of the true data generating model converges to 1 asymptotically in n
and p. This consistency is shown to be true even with p growing almost exponen-
tially in n. The reason being that the true model yields a stronger signal since it no
longer has to compete within an overly redundant sample space.

The paper is organized as follows. Section 2 serves to introduce the general
methodology and computational algorithm for carrying out our variable selection
procedure based on a recent algorithm for explicit L0 minimization (Bertsimas,
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King and Mazumder [5]), which is fast enough to be used on real data. The condi-
tions needed for the main results, and the main results are presented and discussed
in Section 3. Proofs are organized in the Appendix. We demonstrate the empiri-
cal performance of our procedure and compare it to other Bayesian and frequentist
methods in simulation setups on synthetic data in Section 4. Computer code imple-
menting our procedure is provided at https://jonathanpw.github.io/software.html.

2. Methodology. As described in the previous section, our idea behind ex-
ploiting a nonredundancy property of the true data generating model relies on con-
structing a probability distribution concentrated on what we denote as ε-admissible
subsets. This object is defined precisely in Definition 2.1, but first an aside on the
notation used throughout the paper.

The function | · | denotes the absolute value function if its argument is scalar-
valued, and denotes the cardinality function if its argument is set-valued. The
norms ∥ · ∥2 and ∥ · ∥0 refer, respectfully, to the usual L2 and L0 norms defined on
finite-dimensional Euclidean spaces. Lastly, ∥ · ∥F denotes the matrix Frobenius
norm.

Let Y be an n-dimensional random vector, X an n × p matrix with columns
scaled to have unit norm, and β0 a fixed p-dimensional vector with nonzero (or
active) components indexed by the subset Mo ⊂ {1, . . . , p}, with

(2) Y ∼Nn
(
XMoβ

0
Mo

,
(
σ 0

Mo

)2
In

)
.

The design matrix denoted by XMo is defined as the matrix composed of only those
columns of X corresponding to the index set Mo. The subscript “o” refers to the in-
terpretation of Mo as corresponding to the “oracle” subset of covariates. Moreover,
β0

Mo
denotes the true values of the oracle coefficients, while βMo is understood as a

random vector whose uncertainty resides in not knowing the true coefficients β0
Mo

.
For any subset M , the vector β0

M refers to the projection of the column space of XM

on the true coefficients β0
Mo

, that is, β0
M = (X′

MXM)−1X′
MXMoβ

0
Mo

= Ey(β̂M),
where β̂M := (X′

MXM)−1X′
MY . The subscript on Ey(·) is used to denote the ex-

pectation taken with respect to the sampling distribution of the data Y . Lastly,
σ 0

Mo
> 0 denotes the true unknown error standard deviation, while σMo is a ran-

dom variable whose distribution expresses the uncertainty from not knowing σ 0
Mo

,
under the oracle model.

The objective is to construct a statistical procedure which can be shown, asymp-
totically and demonstrated empirically, to be able to identify Mo as the index
set of the oracle model within the sample space of all 2p candidate subsets
M ⊂ {1, . . . , p}. For each index set, M , in the sample space the conditional sam-
pling distribution of the data is assumed as

(3) Y |βM,σ 2
M ∼Nn

(
XMβM,σ 2

MIn
)
.

The centerpiece of our methodology is then the following definition.
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DEFINITION 2.1. Assume fixed ε > 0. A given βM coupled within some in-
dex subset M ⊂ {1, . . . , p} is said to be ε-admissible if and only if h(βM) = 1,
where

(4) h(βM) := I
{1

2

∥∥X′(XMβM − Xbmin)
∥∥2

2 ≥ ε

}
,

and bmin solves

min
b∈Rp

1
2

∥∥X′(XMβM − Xb)
∥∥2

2

subject to

∥b∥0 ≤ |M| − 1.

Observe that this definition is consistent with the heuristic description of ε-
admissible subsets given in the previous section. In particular, if the subset of co-
variates indexed by M is linearly dependent or if one of the components of βM is
zero, then h(βM) = 0. The subtlety in this definition is assuming an appropriately
chosen ε which is able to strike an optimal balance for distinguishing signal from
noise. Intuitively, ε = ε(n,p,M), that is, a function of the amount of information
available given by n, the difficulty of the problem represented by p and informa-
tion about a given M being considered such as |M|. For instance, if |M| > n then
h(βM) = 0 because XM cannot have full rank. In this case, any ε > 0 will work,
but the choice of ε matters a lot if |M| ≤ n. The choice of ε is a major focus of
Section 3 where the main results of the paper are presented, and from where we
suggest the following default choice:

(5) ε = $M σ̂ 2
M

(
n0.51

9
+ |M| log(pπ)1.1

9
− po

)

+
,

where $M := ∥HMX∥2
F and σ̂ 2

M := RSSM/(n − |M|) with RSSM :=
y′(In − HM)y and HM := XM(X′

MXM)−1X′
M , and the vector y an observation

from the true model (2). The parameter po represents prior belief about |Mo|,
the number of covariates in the true model Mo. In practice, a value of po can be
directly specified or selected by cross-validation. A built-in cross-validation proce-
dure is included in the accompanying software to this paper. Details are provided
with the simulation study in Section 4.

Within the h function in Definition 2.1, the quantity 1
2∥X′(XMβM − Xbmin)∥2

2
represents the difference in prediction for a subset M against all subsets with fewer
covariates. This measure of distance has been adapted from Candes and Tao [8],
but they deal with the error ∥X′(y − Xb)∥∞ over b ∈ Rp . This is very different
from using XMβM in place of y because the former results in a noiseless measure
of distance. To illustrate, observe that

Ey
(∥∥X′(Y − Xb)

∥∥2
2
) = ∥∥X′(XMoβ

0
Mo

− Xb
)∥∥2

2 + (
σ 0

Mo

)2 · p.
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There are various reasons for using the quantity X′(XMβM − Xb) from the
Dantzig selector (Candes and Tao [8]) versus simply the difference in predic-
tions (XMβM − Xb) as in the LASSO (Tibshirani [21]). One reason is that
X′(XMβM − Xb) accounts for difference in predictions as well as correlations
with the explanatory data, as discussed in Berk [4]. If the difference in predic-
tions is small but is highly correlated with the design matrix, then it is likely that
the smaller subset of covariates is unable to account for the effect of one or more
of the covariates in M . Thus, using X′(XMβM − Xb) instead of just the differ-
ence in predictions is a method of controlling for potential omitted variable effects
which could incorrectly find a close fitting subset to M . Another advantage of
X′(XMβM − Xb) is that it is invariant under orthogonal transformations of the
design matrix, as pointed out in Candes and Tao [8].

Now that the foundation for ε-admissible subsets of the parameter space has
been laid out, it remains to show how Definition 2.1 can be coupled with a like-
lihood based approach for constructing a probability distribution over index sub-
sets M ⊂ {1, . . . , p}. This is a common strategy for Bayesian approaches, that is,
construct a prior density with desirable properties for variable selection and then
couple the prior with a likelihood function of the data to study the resulting pos-
terior distribution. However, it is not clear what sort of a prior to use within our
ε-admissible subsets approach, and recent developments in generalized fiducial in-
ference (GFI) offer a systematic method of deriving objective Bayes-like posterior
distributions.

To illustrate as in Hannig et al. [11], suppose that some data Y = G(U, θ) for
some deterministic data generating equation G(·, ·), some parameters θ and some
random component U whose distribution is independent of θ and is completely
known. The generalized fiducial distribution of θ is then given by

r(θ |y) = f (y, θ)J (y, θ)
∫
' f (y, θ ′)J (y, θ ′) dθ ′ ,

where f is the likelihood function and

J (y, θ) = D

(
d

dθ
G(u, θ)

∣∣∣∣
u=G−1(y,θ)

)

with D(A) = (detA′A)
1
2 . The component J (y, θ) is termed the Jacobian because

it results from inverting the data generating equation on the data. We are commit-
ting a slight abuse of notation as r(θ |y) is not a conditional density in the usual
sense. Instead, we are using this notation to stress that the generalized fiducial
distribution is a function of the observed data y.

To make matters concrete in the linear model setting of (3), the parameters
are θ = (βM,σM), the data generating equation is specified as G(U, (βM,σM)) =
XMβM + σMU where U ∼ Nn(0, In), and the Jacobian term reduces to
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J (y, (βM,σM)) = σ−1
M |det(X′

MXM)| 1
2 RSS

1
2
M . Thus,

r
(
(βM,σM)|y) ∝ σ−n

M e
−∥y−XMβM ∥2

2
2σ2

M σ−1
M

∣∣ det
(
X′

MXM
)∣∣ 1

2 RSS
1
2
M · h(βM),

where the factor of h(βM) appears in the likelihood from only considering ε-
admissible subsets of the parameter space. Accordingly, as is done with a Bayesian
posterior density and in Section 3 of Hannig et al. [11], define the GFI prob-
ability of a given subset M to be proportional to the normalizing constant of
r((βM,σM)|y). That is,

r(M|y) :=
∫

f (y, (βM,σM))J (y, (βM,σM))h(βM)d(σM,βM)
∑p

j=1
∑

|M|=j

∫
f (y, (βM,σM))J (y, (βM,σM))h(βM)d(σM,βM)

∝
∫

R|M|

∫ ∞

0
h(βM)

|det(X′
MXM)| 1

2 RSS
1
2
M

σ n+1
M e

(y−XMβM)′(y−XMβM)

2σ2
M

dσM dβM,

which simplifies to

(6) r(M|y) ∝ π
|M|

2 (

(
n − |M|

2

)
RSS

−( n−|M|−1
2 )

M E
(
h(βM)

)
,

where the expectation is taken with respect to the location-scale multivariate T
distribution,

(7) tn−|M|
(
β̂M,

RSSM

n − |M|
(
X′

MXM
)−1

)
,

with β̂M := (X′
MXM)−1X′

My. Notice that the quantity E(h(βM)) is a function of
the observed data y.

Observe that (6) expresses the relative likelihood of the subset M over all 2p

possible subsets. The expression can be described as a product of two terms, the
first being comprised of information from the sampling distribution of the data
and largely driven by the residual sum of squares, RSSM , and the second having
to do with the ε-admissibility of βM , in the form of E(h(βM)). Thus, the support
of r(M|y) in (6) is dominated by the ε-admissible subsets, as desired.

Section 3 provides the conditions and supporting lemmas and theorems needed
to show that r(Mo|Y) → 1 in probability as n,p → ∞. First however, a few re-
marks are provided about computing r(M|y) on actual data.

2.1. Remarks on computation. With a probability distribution now defined
over ε-admissible subsets, it must be demonstrated that r(M|y) in (6) can be effi-
ciently computed. There are two main computational issues to deal with. The first
is to evaluate h(βM) for a given βM , and the second is to sample subsets M via
pseudo-marginal based MCMC. The computational complexity and the need for



1730 J. P. WILLIAMS AND J. HANNIG

pseudo-marginal based MCMC arises because neither h(βM) nor E(h(βM)) have
a closed-form solution.

To evaluate h(βM) for a given βM we adapt an explicit L0 minimization al-
gorithm introduced in Bertsimas, King and Mazumder [5]. The authors state that
their algorithm borrows ideas from projected gradient descent and methods in first-
order convex optimization, and solves problems of the form minb∈Rp g(b) subject
to ∥b∥0 ≤ κ , where g(b) ≥ 0 is convex and has Lipschitz continuous gradient:
∥∇g(b) − ∇g(b̃)∥2 ≤ l∥b − b̃∥2. The algorithm is not guaranteed to find a global
optimum (unless formal optimality tests are run, which can take a long time), but
Bertsimas, King and Mazumder [5] provide provable guarantees that the algo-
rithm will converge to a first-order stationary point, which is defined as a vector
b̃ ∈ Rp with ∥b̃∥0 ≤ κ which satisfies b̃ = b̃ − 1

l ∇g(b̃). Paraphrasing from Bert-
simas, King and Mazumder [5], their algorithm detects the active set after a few
iterations, and then takes additional time to estimate the coefficient values to a
high accuracy level. In our application of their algorithm, we are not first-most
interested in finding a global optimum. To evaluate h(βM), we need only deter-
mine if minb∈Rp

1
2∥X′(XMβM −Xb)∥2

2 is smaller than ε [as in (5)]. For βM which
are not ε-admissible, the objective function, 1

2∥X′(XMβM − Xb)∥2
2, can be made

small very quickly via our implementation of the L0 minimization algorithm. To
illustrate how, consider the following specifics of our implementation. The precise
details regarding the algorithm can be found accompanying our software docu-
mentation at https://jonathanpw.github.io/software.html.

First, to estimate E(h(βM)) we use a sample mean of sample vectors drawn from
the location-scale multivariate T distribution in (7). This multivariate T distribution
is centered at the least squares estimator, β̂M , and multivariate theory suggests
that β̂M will on average be close to the coefficients β0

M . By warm starting the
L0 minimization algorithm at β̂M with the smallest coefficient removed, subsets
corresponding to β0

M with at least one zero coefficient typically yield h(βM) = 0
within a few steps of the algorithm.

Second, as per the definition of h(·) in (4) the objective function is minimized
over all b ∈ Rp with ∥b∥0 ≤ |M| − 1. Hence, the κ required for the L0 mini-
mization algorithm from Bertsimas, King and Mazumder [5] is naturally chosen
for us as κ = |M| − 1. Knowing how to choose κ greatly reduces the L0 opti-
mization problem. Moreover, our implementation is further simplified by the fact
that the closest prediction to XMβM for a given M is guaranteed to have |M| − 1
covariates. Accordingly, the objective function in h(βM) need not be minimized
over all b ∈ Rp with ∥b∥0 ≤ |M| − 1, but can be minimized over all b ∈ Rp with
∥b∥0 = |M| − 1.

The second computational issue is to sample subsets M via pseudo-marginal
based MCMC. We do this by using the Grouped Independence Metropolis Hast-
ings (GIMH) algorithm from Andrieu and Roberts [1], but originally introduced in
Beaumont [2]. The reason standard MCMC techniques do not apply is that there is
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no obvious closed-form expression for the probability mass function (6) because of
the expectation, E(h(βM)), in the expression. As described in Andrieu and Roberts
[1], such situations warrant introducing a latent variable to yield analytical expres-
sions or easier implementation.

In the case of r(M|y) in (6), we introduce the latent location-scale multivariate
T vector in (7) from within the expectation E(h(βM)). Our pseudo-marginal based
MCMC is carried out by sampling an index subset M along with sampling some
pre-specified number, N , of multivariate T vectors (corresponding to M) from (7).
The sample of multivariate T vectors, say B , is then used to compute the sam-
ple mean estimate of E(h(βM)). Accordingly, we define a joint Markov chain on
(M,B), but discard B to obtain samples from the marginal distribution of M . As
argued in Andrieu and Roberts [1], this is a valid MCMC sampling strategy, but is
known to suffer from slower mixing than if we were able to integrate the βM out of
the mass function r(M|y) in (6), that is, analytically evaluate E(h(βM)). However,
this is not possible given the h function in (4). Additionally, the mixing associated
with pseudo-marginal approaches is known to be poor when the number of im-
portance samples (N , the sample size of B) is small. These practical bottlenecks
outline avenues for future research. Nonetheless, we demonstrate in Section 4 that
our computational strategies are efficient enough to be implemented on actual data,
in comparison to other common penalized likelihood and Bayesian approaches.

3. Theoretical results. The main objective of this section is to show under
what conditions, asymptotically, r(Mo|Y) in (6) will converge to 1, particularly if
p ≫ n. The ε-admissible subsets approach is able to achieve such a strong con-
sistency result because the resulting sample space is effectively reduced to only
those subsets with no redundancies. The essence of the mathematical result is that
the space of ε-admissible sets is small enough that the true model can be detected.
This addresses the issue raised in Ghosh and Ghattas [10] that high-dimensional
settings often lead to arbitrarily small probabilities for all models (including the
true model) simply because there are too many models to consider.

3.1. Discussion of the conditions. The first two conditions, Condition 3.1 and
Condition 3.2, are to ensure that the true model, Mo, is identifiable. Observe
from (4) that ε is used to control the sensitivity and specificity for identifying
ε-admissible subsets. In particular, if ε is too large, then h(βMo) will incorrectly
be set to zero implying that βMo is not ε-admissible. Condition 3.1 specifies how
large ε can be while the true model remains identifiable. This condition turns out
to be critically important in actual data applications because computing h(βMo) is
closely related to the comparison in equation (8).

CONDITION 3.1. For large n and p,

(8)
1
18

∥∥X′(XMoβ
0
Mo

− Xbmin
)∥∥2

2 ≥ ε,
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where bmin solves

min
b∈Rp

1
2

∥∥X′(XMoβ
0
Mo

− Xb
)∥∥2

2

subject to

∥b∥0 ≤ |Mo| − 1.

Condition 3.2 is born from Lemma A.1 which is an important necessary result
for the main result of this paper, Theorem 3.9. The term log(n)γ represents the
sparsity assumption for the true model, that is, the number of covariates in the
true model must not exceed log(n)γ for some fixed scalar γ > 0. The γ parameter
indicates that the asymptotic results remain true if the true model grows faster than
log(n), but not faster than some power of log(n). In finite-sample applications, γ
has no consequence and can be ignored.

The constant α ∈ (0,1) reflects the only explicit restriction needed on the sam-
ple space of 2p subsets to show that r(Mo|Y) → 1 in probability for large n and
p, Theorem 3.9. The residual sum of squares term in r(M|Y) in (6) cannot be con-
trolled [as a ratio to r(Mo|Y)] for arbitrary subsets M with |M| = O(n) because
the column span of XM includes y ∈ Rn when rank(XM) = n. To eliminate such
subsets from the sample space, Condition 3.2 requires that only subsets of size
|M| ≤ nα can be given nonzero probability. However, recall from Definition 2.1
that h(βM) = 0 if |M| > n because in this case the columns of XM must be linearly
dependent. Accordingly, all subsets M with |M| > n are given zero probability, by
definition. Evidenced by this fact, the only explicit restriction placed on the sample
space is that subsets M with |M| ∈ (nα, n) are excluded. In sparse settings, it is
assumed that |Mo| ≪ n anyway, so neglecting such subsets is reasonable. Conver-
gence to the true model Mo will be quicker for smaller α because there are less
models to consider, but too small of an α will exclude Mo from the sample space.

In Condition 3.2, and for the remainder of this section assume that γ > 0, say
γ = 1, and α ∈ (0,1), say α = 0.5, have been chosen and fixed at appropriate
values.

CONDITION 3.2. The true model Mo satisfies |Mo| ≤ log(n)γ , and

lim
n→∞
p→∞

min
{

,M

|Mo| log(p)
: M ≠ Mo, |M| ≤ |Mo|

}
= ∞,

lim inf
n→∞
p→∞

n1−α

log(p)
> 2 and log(p) <

n − |Mo| − 1
4 log(n)γ

for large n and p, where ,M := ∥XMoβ
0
Mo

−HMXMoβ
0
Mo

∥2
2 as in Lai, Hannig and

Lee [14].
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This is a slightly weaker version of condition (11) in Lai, Hannig and Lee [14].
They relate Condition 3.2 to the sparse Riesz condition (Zhang and Huang [22])
which requires that the eigenvalues of X′

MXM/n are uniformly bounded away
from 0 and ∞. Essentially, ,M is a measure of how distinct the true model predic-
tions XMoβ

0
Mo

are from their projection onto the column space of XM for M ≠ Mo

and |M| ≤ |Mo|. Recall that HM := XM(X′
MXM)−1X′

M . In particular, if XM is
orthogonal to XMo , then ,M = ∥XMoβ

0
Mo

∥2
2 which will be much larger than the

denominator, |Mo| log(p). The requirements of this condition are reasonable be-
cause ,M grows very fast for M such that Mo ! M .

Condition 3.2 is important for being able to identify the true model among other
models M with |M| ≤ |Mo|. The next two conditions address the requirements for
M with |M| > |Mo|, which primarily rely on the fact that such subsets are not
ε-admissible.

Conditions 3.3 and 3.4 demonstrate how large ε needs to be to achieve the con-
sistency result of the main theorem. Condition 3.3 states that for subsets of co-
variates with redundancies, ε needs to be larger than the difference in projections
of the true model prediction, XMoβ

0
Mo

, onto M and onto a strict subset of M .
This condition facilitates the intuition that the variable selection procedure will
not concentrate on subsets M with redundant covariates. If a given subset M is not
ε-admissible, then the difference in projections will be small so that the condition
is easily achieved.

CONDITION 3.3. For any M with |M| > |Mo|, for large n and p,

9
2

∥∥X′(HM − HM(−1))XMoβ
0
Mo

∥∥2
2 < ε,

where HM(−1) is the projection matrix for M after omitting the covariate which
minimizes ∥X′(HM − HM(−1))XMoβ

0
Mo

∥2
2.

In fact, if Mo ⊂ M with |Mo| < |M|, then HMXMoβ
0
Mo

= HM(−1)XMoβ
0
Mo

in
which case Condition 3.3 holds trivially.

Lastly, Condition 3.4 describes the rate at which ε needs to grow to achieve the
consistency of the main result. The distinction between Condition 3.3 and Con-
dition 3.4 is that the former provides a necessary lower bound for arguing that
E(h(βM)) vanishes for M such that |M| > |Mo|, while the latter provides the rate
at which ε must grow to achieve the consistency result of Theorem 3.9.

CONDITION 3.4.

lim
n→∞
p→∞

min
|M|≤nα

ε
18$M σ̂ 2

M

+ D1|Mo| − ϕ(M,n,p)

log(n)
= ∞,
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where

ϕ(M,n,p) := 4e2nα + (
D1 + (

1 + 4e2)
log(p)

)|M| + log
( |M|

1 − 1
n−|M|

)
,

and D1 = 1
2 log( 6π

1− nα+2
n

). Additionally, ε
9$M σ̂ 2

M

< n−|M|
2 for all M with |M| ≤ nα .

The terms which compete with ε arise in the proofs of Lemma A.1 and Theo-
rem 3.9. Recall that σ̂ 2

M := RSSM/(n− |M|), where RSSM is the classical residual
sum of squares for model M , and that $M := ∥HMX∥2

F . The $M term arises from
Lemmas 3.5 and 3.6. It is intimately related to the presence of collinearity among
the covariates, and Condition 3.4 implies that ε must account for collinearity by
controlling for $M . Observe that if X is orthogonal, then $M = |M|.

3.2. Main result. The first two results are lemmas which are needed in the
proofs of Theorems 3.7 and 3.8. Lemma 3.5 illustrates the rate at which βM con-
centrates around its mean, β̂M , the least squares estimator, and Lemma 3.6 illus-
trates the rate at which β̂M concentrates around its mean, Ey(β̂M). Theorem 3.7
uses these two lemmas to bound the rate at which βM concentrates around Ey(β̂M)
for subsets M with |M| > |Mo|. This yields an upper bound on E(h(βM)) with a
probabilistic guarantee, and implies that E(h(βM)) vanishes for large n and p, for
large non-ε-admissible subsets. The proofs are relegated to the Appendix.

LEMMA 3.5. For any fixed c1 ∈ (0,1) assume |M| ≤ c1n, and choose n and
p such that ε

9$M σ̂ 2
M

< n−|M|
2 . If

βM ∼tn−|M|
(
β̂M,

RSSM

n − |M|
(
X′

MXM
)−1

)
,

where β̂M = (X′
MXM)−1X′

My, then

P

(1
2

∥∥X′XM(βM − β̂M)
∥∥2

2 ≥ ε

9

)
≤ 2

3
2 3|M|σ̂M

√
$Me

− ε

18$M σ̂2
M

√
πε(1 − 1

n−|M|)
.

In the next lemma, Py is used to denote the probability measure associated with
the sampling distribution of the data Y .

LEMMA 3.6. Assume |M| < n, and Y |βM,σ 2
M ∼Nn(XMβM,σ 2

MIn). Then the
least squares estimator β̂M ∼N|M|(Ey(β̂M),σ 2

M(X′
MXM)−1), and

Py

(1
2

∥∥X′XM
(
β̂M − Ey(β̂M)

)∥∥2
2 ≥ ε

9

)
≤ 3|M|σM

√
$M√

πε
e
− ε

9σ2
M$M .
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Combining these two lemmas gives the following nonasymptotic concentration
result for models that are larger than the true model. Recall that the expectation
E(h(βM)) depends on the observed data y. The following two theorems study the
frequentist behavior of this quantity with respect to the sampling distribution of Y .

THEOREM 3.7. For any fixed c1 ∈ (0,1) suppose |Mo| < |M| ≤ c1n, choose n
and p such that ε

9$M σ̂ 2
M

< n−|M|
2 , and assume that ε satisfies Condition 3.3. Then

Py

(
E

(
h(βM)

) ≤ 2
3
2 3|M|σ̂M

√
$M√

πε(1 − 1
n−|M|)

e
− ε

18$M σ̂2
M

)
≥ 1 − 3|M|σM

√
$M

√
επe

ε

9σ2
M$M

.

The next result is a probabilistic guarantee the true model is ε-admissible given
ε satisfies Condition 3.1. This result is a statement that Mo is identifiable.

THEOREM 3.8. For any fixed c1 ∈ (0,1), suppose |Mo| ≤ c1n, choose n and
p such that ε

9$Mo σ̂ 2
Mo

< n−|Mo|
2 , and assume that ε satisfies Condition 3.1. Then

Py

(
E

(
h(βMo)

) ≥ 1 − 2
3
2 3pMo σ̂Mo

√
$Mo

√
πε(1 − 1

n−pMo
)e

ε

18$Mo σ̂2
Mo

)
≥ 1 − 3pMoσMo

√
$Mo

√
επe

ε

9σ2
Mo

$Mo

.

The following result is the main result of the paper. It shows that the ratio of the
generalized fiducial probability of the true model to the sum over that of all other
subsets of covariates M satisfying |M| ≤ nα will converge to 1 in probability for
large n and p. Note that the restriction to subsets M with |M| ≤ nα is a stronger
restriction than |M| ≤ c1n, which is sufficient for Theorems 3.7 and 3.8. The rea-
son being that the main result is stronger than the results of these two theorems. In
fact, Theorems 3.7 and 3.8 are nonasymptotic results that hold for each fixed model
M separately, while Theorem 3.9 is an asymptotic result which applies uniformly
over all |M| ≤ nα . Just like with a conditional distribution, r(M|Y) is obtained by
replacing the observed data y with the random variable Y (random with respect to
the sampling distribution), in (6).

THEOREM 3.9. Given Conditions 3.1– 3.4, the true model Mo satisfies

r(Mo|Y)
∑nα

j=1
∑

M:|M|=j r(M|Y)

Py−→ 1

as n → ∞ or n,p → ∞.

Although this is an asymptotic result, many of the ingredients that are used in
its proof are nonasymptotic concentration results which are valid if Conditions
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3.1–3.4 are satisfied. Therefore, it can be expected that when these conditions are
satisfied, in finite-sample situations the generalized fiducial distribution will con-
centrate on the true model Mo. This expectation is indeed validated by the empiri-
cal performance of the procedure, which is demonstrated in the following section.

4. Simulation results. This section serves to demonstrate the empirical per-
formance of our algorithm on synthetic data. It is comprised of essentially two sim-
ulation setups. The first setup, similar to that presented in Johnson and Rossell [13],
compares our procedure to the nonlocal prior approach, the spike and slab LASSO
of Ročková and George [18], the elastic net as implementated in the Python mod-
ule scikit-learn (Pedregosa et al. [17]), and to the SCAD as implementated
in the R package ncvreg (Breheny and Huang [7]). The authors of the nonlo-
cal prior and the spike and slab LASSO, respectively, have made available the R
packages mombf and SSL for implementing their methods.

The second setup illustrates a critical difference between our ε-admissible sub-
sets and the nonlocal prior approach. Namely, for highly collinear finite-sample
settings in which the true model is not uniquely expressed, given the level of noise
in the data (i.e., σ 0

Mo
), we demonstrate that our approach concentrates (in the sense

of the MAP estimator) on subsets with fewer covariates without sacrificing predic-
tion error. The intuition for why this should be the case was discussed in Section 1.

4.1. Simulation setup 1. Here, we generate 2000 data vectors y accord-
ing to model (2) with Mo consisting of 8 covariates corresponding to β0

Mo
=

(−1.5,−1,−0.8,−0.6,0.6,0.8,1,1.5)′, and σ 0
Mo

= 1. The n × p design matrix
X is generated with rows from the Np(0,.) distribution, where the diagonal com-
ponents .ii = 1 and the off-diagonal components .ij = ρ for i ≠ j . The first
1000 y correspond to an independent design with ρ = 0, while the last 1000 y
correspond to ρ = 0.25, as in the simulation setup of Johnson and Rossell [13].
Note that 2000 design matrices X are generated, and one y is generated from each
design. The sample size n is set at n = 100, and p = 100,200,300,400,500 are
all considered.

We implement our algorithm on each of the 2000 synthetic data sets for 15,000
MCMC steps with the first 5000 discarded. Squared coefficient estimates from
elastic net (using scikit-learn) added by n−2 serve as MCMC covariate pro-
posal weights. The default ε in (5) is used, and we implemented a 10-fold cross-
validation scheme for choosing our tuning parameter po.

The cross-validation consists of breaking the data into 10 folds (with a different
set of 10 observations held out at each fold since n = 100), and implementing our
MCMC algorithm separately for each po in the grid {1,2, . . . ,10}, on each of the
10 training sets. Each of the 10 implementations of the MCMC on each of the 10
training sets is run for 200 steps with the first 100 steps discarded (N = 30 is set
during the cross-validation procedure). Squared nonzero coefficient estimates from
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elastic net (using scikit-learn) serve as MCMC covariate proposal weights
within the cross-validation procedure. The MAP estimated subset for each MCMC
chain is used to compute the Bayesian information criterion (BIC) on the held-out
test set, and the computed BIC values are averaged over the 10 test sets, for each
po ∈ {1,2, . . . ,10}. The po corresponding to the minimum average test set BIC is
then selected.

Finally, for our implementation of the algorithm post-selection of po, the num-
ber of importance samples for estimating E(h(βM)) within each step of the algo-
rithm is set at N = 100 which, through empirical experimentation, seems to be
enough. All competing variable selection procedures are implemented using ex-
isting software at default specifications. The one exception is that the nonlocal
prior procedure is set to run for 5000 steps, as is the case in the simulation setup
of Johnson and Rossell [13]. The nonlocal prior procedure/software did not scale
well for increased p, and required over a weeks worth of parallel computations on
a computing cluster to obtain the results for the first simulation setup. The tuning
parameters for all methods are chosen with the default cross-validation procedures
provided with the software. Lastly, as in the simulation section for Ročková and
George [18] their λ1 is set at 1 (with a grid of 20 λ0 values ending at 50), and their
adaptive (best performing) procedure is used with θ ∼Beta(1,p).

Figure 1 shows results of the first simulation setup. The first row of plots dis-
plays the average generalized fiducial probability of the true model (i.e., average
r(Mo|y)), or the average posterior probability of the true model for the Bayesian
nonlocal procedure (i.e., average P(Mo|y)), over the 1000 synthetic data sets (for
ρ = 0 and ρ = 0.25, resp.). Conditional on the data, these plots address the con-
sistency of the procedures with respect to the uncertainty from not knowing Mo.
This generalized fiducial or Bayesian-like consistency is that which is dealt with
in Theorem 3.9. Note that frequentist and MAP estimators do not yield posterior
probability estimates, and thus cannot be compared to in the first row of plots.

The second row of Figure 1 shows the average proportion of correct model se-
lections over the 1000 synthetic data sets (for ρ = 0 and ρ = 0.25, resp.). For the
GFI and the Bayesian procedures, the MAP subset is taken to be the estimator of
the true model, and in the frequentist procedures the estimated model is consid-
ered to be the subset of covariates with nonzero coefficient estimates. These plots
address the consistency of the procedures with respect to repeated sampling (i.e.,
frequentist) uncertainty. Finally, the third row of Figure 1 presents the average
root mean squared error (RMSE) over the 1000 synthetic data sets (for ρ = 0 and
ρ = 0.25, resp.). The MAP estimated model is used to compute the RMSE for the
GFI and Bayesian procedures. For all procedures, the RMSE is computed on an
out-of-sample test set of 100 observations.

Note that the criterions used in the first two rows of Figure 1 are very strict.
They only reflect instances when the procedures are exactly correct, and count the
procedure as incorrect if it is missing even one covariate from the true model or
includes even one spurious covariate. Often the elastic net and SCAD are able to
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FIG. 1. The average r(Mo|y), or average P(Mo|y) is displayed in the first row, the average pro-
portion of correct model selections in the second row and the average RMSE in the third. Averages
are over 1000 synthetic data sets (for ρ = 0 and ρ = 0.25, resp.). For the GFI and Bayesian proce-
dures, the MAP subset is used as the estimator of the true model, and in the frequentist procedures
the estimated model is considered to be the subset of covariates with nonzero coefficient estimates.
The RMSE is computed on an out-of-sample test set of 100 observations.
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identify all of the true covariates but estimate extra coefficients to be nonzero. This
results in poor identification of the true subset, and worse out-of-sample predic-
tion error. The remaining procedures (including our ε-admissible subsets method)
struggle to identify the two covariates with smallest coefficient magnitudes, but
typically do not introduce more than one or two false positives.

Our ε-admissible subsets procedure evidently performs the best at assigning
highest posterior probability to the true model. And even in comparison to the
frequentist-oriented metrics, proportion of correct model selections and out-of-
sample RMSE, our ε-admissible subsets procedure performs more or less on par
with the best performing methods considered.

In collinear design settings (i.e., ρ > 0), it may be the case that a strict subset
of the true data generating model is identified as the “true” model within the ε-
admissible framework. This is meaningful because it manifests the fact that the true
model may not be minimal (i.e., contains redundant predictors) in collinear, finite-
sample settings. Furthermore, it explains the larger difference in proportion of true
model selections between the ε-admissible and nonlocal prior performances in the
ρ = 0.25 case (versus the ρ = 0 case), which is accompanied by only a very small
change in the difference between RMSE performance. An interpretation is that
for highly correlated covariates the ε-admissible subsets method may not recover
the correct set of predictors (or does so less frequently), but instead it recovers a
smaller set that results in almost the same predictions (as can be seen from the
RMSE in Figure 1). This phenomenon is illustrated in a more extreme case of
collinearity in the next simulation setup.

4.2. Simulation setup 2. The ε-admissible subsets approach has been devel-
oped in this paper as a method of obtaining a posterior-like distribution which
effectively eliminates (i.e., assigns negligible probability to) all subsets with re-
dundancies. To illustrate that our constructed methods do just that, consider the
following setup in which the true data generating model lacks uniqueness for the
small sample size n = 30:

(9) Y ∼Nn
(
1 · x(1) + 1 · x(2) + · · · + 1 · x(9), In

)
,

where x(1), x(2), x(3) i.i.d.∼ Nn(0, In), and

x(4) ∼Nn
(
0.25 · x(1) ,0.12In

)
,

x(5) ∼Nn
(

0.5 · x(2) ,0.12In
)
,

x(6) ∼Nn
( − 0.75 · x(3),0.12In

)
,

x(7) ∼Nn
(
x(1) + x(3) ,0.12In

)
,

x(8) ∼Nn
(

x(2) − x(3) ,0.12In
)
,

x(9) ∼Nn
(
x(1) + x(2) + x(3) ,0.12In

)
.
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TABLE 1
The average number of covariates in the MAP estimator, MMAP, (|MMAP|) is presented in the first
column, the average RMSE in the second and the average r(MMAP|y) or P(MMAP|y) in the third.

Averages are over 1000 synthetic data sets from model (9). The RMSE is computed on an
out-of-sample test set of 30 observations

Model size RMSE r(MMAP|y) or P(MMAP|y)

ε-admissible subsets 3.476 1.138 0.365
Nonlocal prior 8.997 1.197 0.333

With standard deviations of 0.1 and a model error standard deviation of 1, covari-
ates x(4), . . . , x(9) can all be approximately expressed as a linear combination of
x(1), x(2), x(3). Accordingly, with a small increase in error variance, model (9) can
be reexpressed using various combinations of the 9 predictors. However, observe
that a subset with 4 or more predictors predominantly contains redundant informa-
tion.

Recall from Section 1 that the nonlocal prior approach of Johnson and Rossell
[13] is designed to assign negligible probabilities to subsets containing predictor(s)
with coefficients of zero. So, in theory, the full subset {x(1), . . . , x(9)} will remain
the best candidate for the true model within the nonlocal prior framework. In fact,
this is demonstrated to be the case in Table 1 which shows the performance of both
the nonlocal prior and the ε-admissible subsets approach on 1000 data vectors y
generated according to (9), with each covariate having a “true” coefficient of 1.
Note that as in the first simulation setup 1000 design matrices X are generated to
generate the 1000 y vectors.

Table 1 shows that the MAP estimate for the ε-admissible subsets approach con-
tains 3–4 covariates, on average, and that in fact the average RMSE is smaller than
that of the nonlocal prior approach. Indeed, the MAP estimates for the nonlocal
prior procedure typically includes all 9 covariates even though the y vectors can
be mostly explained by only 3 of the predictors. This simple simulation illustrates a
pivotal difference between the nonlocal prior and ε-admissible subsets approaches.
With p = 9, the implication of not discriminating against redundant subsets may
seem trivial. However, the 2p size of the sample space grows rapidly in p, and thus,
puts exponentially more burden on procedures which do not discriminate based on
redundancies.

5. Concluding remarks. In this paper, we have developed a new perspective
for variable selection to exploit a nonredundancy property of a true data generating
model. The basic idea calls for defining a true model as one which contains mini-
mal amount of information necessary for explaining and/or predicting the observed
data. The difference between our definition of a true model and the usual definition
arises only in finite-sample applications, and was illustrated in Section 4.2. Within
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our variable selection framework, this definition allows us to show that under a
typical sparsity assumption the posterior-like probability of the true model con-
verges to 1 asymptotically, even with p growing almost exponentially in n, with
the intuition that redundancies in the sample space are very effectively eliminated.
Moreover, our empirical simulation results are consistent with this strong consis-
tency result, and as desired, it is demonstrated in a situation of high collinearity
that the ε-admissible subsets approach yields a posterior-like distribution which
is concentrated over subsets with fewer covariates, without sacrificing prediction
error.

A nonredundancy property of a true data generating model is seemingly general
enough to extend to variable or feature selection problems beyond the linear model
setting, but would seem infeasible if it could not be developed for the linear model
setting. Thus, the goal of this paper has been to establish the potential feasibility
of exploiting such a property. In future work, we hope to extend our methods to
more complicated settings.

APPENDIX: PROOFS

PROOF OF LEMMA 3.5. From the distributional assumption on βM , it follows
that

T :=
√

n − |M|
RSSM

(
X′

MXM
) 1

2 (βM − β̂M) ∼tn−|M|(0, I|M|).

Thus,

∥∥X′XM(βM − β̂M)
∥∥2

2 = ∥AT ∥2
2

RSSM

n − |M| = ∥∥QDW ′T
∥∥2

2
RSSM

n − |M| ,

where A = X′XM(X′
MXM)−

1
2 is a p × |M| matrix which has the singular value

decomposition A = QDW ′ for Q and W each orthogonal matrices. By the defini-
tion of the multivariate T distribution,

T =
√

n − |M|
V

Z =⇒ W ′T =
√

n − |M|
V

W ′Z =:
√

n − |M|
V

Z̃ =: T̃ ,

where V ∼χ2
n−|M| and Z, Z̃ ∼N|M|(0, I|M|). Then

∥AT ∥2
2 = ∥QDT̃ ∥2

2 = T̃ ′D′DT̃ =
|M|∑

1

T̃ 2
i λi ≤ $M max T̃ 2

j ,

where $M = ∑|M|
1 λi , and λi is the ith eigenvalue of A′A. Observe that $M also

has the more intuitive expression $M = tr(A′A) = ∥HMX∥2
F .
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Recall that σ̂ 2
M := RSSM/(n − |M|). Then

P

(1
2

∥∥X′XM(βM − β̂M)
∥∥2

2 ≥ ε

9

)
= P

(1
2
∥AT ∥2

2
RSSM

n − |M| ≥ ε

9

)

≤ P

(1
2
$M max T̃ 2

j

RSSM

n − |M| ≥ ε

9

)

= P

(
n − |M|

V
maxZ2

j σ̂
2
M ≥ 2ε

9$M

)
.

Since V ∼χ2
n−|M|,

P

(1
2

∥∥X′XM(βM − β̂M)
∥∥2

2 ≥ ε

9

)

≤
∫ ∞

0
P

(
max |Zj | ≥

√
2εv/(n − |M|)
3σ̂M

√
$M

)
v

n−|M|
2 −1e− v

2

2
n−|M|

2 ((n−|M|
2 )

dv

≤
∫ ∞

0

|M|∑

j=1

P

(
|Zj | ≥

√
2εv/(n − |M|)
3σ̂M

√
$M

)
v

n−|M|
2 −1e− v

2

2
n−|M|

2 ((n−|M|
2 )

dv

≤ 3|M|σ̂M
√

$M(n − |M|)
√

2πε(1 + ε

9$M σ̂ 2
M(n−|M|

2 )
)

n−|M|
2 − 3

2

· ((n−|M|−1
2 )

((n−|M|
2 )

,

(10)

where the last inequality follows because for the standard normal CDF, 2 for

x > 0, 2(−x) ≤ 1
x
√

2π
e

−x2
2 .

To simplify the bound, observe first that Jameson [12] gives

(11)
((n−|M|−1

2 )

((n−|M|
2 )

≤
√

2(n − |M|)
n − |M| − 1

.

Second, observe that for 0 ≤ x ≤ n,
(

1 + x

n

)−n

≤ e−x+ x2
2n = e−x(1− x

2n ) ≤ e− x
2 .

By assumption |M| ≤ c1n, and ε
9$M σ̂ 2

M

< n−|M|
2 which implies that

(12)
(

1 + ε

9$M σ̂ 2
M(n−|M|

2 )

)− n−|M|
2 + 3

2 ≤ 2
3
2 e

− ε

18$M σ̂2
M .

Therefore, applying (11) and (12) to (10) gives

P

(1
2

∥∥X′XM(βM − β̂M)
∥∥2

2 ≥ ε

9

)
≤ 2

3
2 3|M|σ̂M

√
$M√

πε(1 − 1
n−|M|)

e
− ε

18$M σ̂2
M .

!
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PROOF OF LEMMA 3.6. Similar to the proof of Lemma 3.5. !

PROOF OF THEOREM 3.7. Recall that

h(βM) = I
{1

2

∥∥X′(XMβM − Xbmin)
∥∥2

2 ≥ ε

}
,

where bmin solves minb∈Rp
1
2∥X′(XMβM −Xb)∥2

2 subject to ∥b∥0 ≤ |M|− 1. Ob-
serve that

E
(
h(βM)

) = P

(1
2

∥∥X′(XMβM − Xbmin)
∥∥2

2 ≥ ε

)

≤ P

(1
2

∥∥X′(XMβM − XEy(β̂M(−1))
)∥∥2

2 ≥ ε

)
,

(13)

where β̂M(−1) is the least squares estimate corresponding to the subset of covari-
ates M with one covariate removed so that ∥Ey(β̂M(−1))∥0 ≤ |M| − 1. The covari-
ate removed is chosen to correspond to the smallest (in magnitude) component of
β̂M . To refine the bound on E(h(βM)), decompose the last expression in (13) using
the triangle inequality as follows:

P

(1
2

∥∥X′(XMβM − XM(−1)Ey(β̂M(−1))
)∥∥2

2 ≥ ε

)

≤ P

(1
2

∥∥X′XM(βM − β̂M)
∥∥2

2 ≥ ε

9

)

+ I
{1

2

∥∥X′XM
(
β̂M − Ey(β̂M)

)∥∥2
2 ≥ ε

9

}

+ I
{1

2

∥∥X′(HM − HM(−1))XMoβ
0
Mo

∥∥2
2 ≥ ε

9

}
,

(14)

where HM := XM(X′
MXM)−1X′

M . Observe that by Lemma 3.5 the first term on
the right-hand side,

P

(1
2

∥∥X′XM(βM − β̂M)
∥∥2

2 ≥ ε

9

)
≤ 2

3
2 3|M|σ̂M

√
$M√

πε(1 − 1
n−|M|)

e
− ε

18$M σ̂2
M .

Note that the last two terms are written as an indicator function because the uncer-
tainty here comes from βM . However, the second term results from the uncertainty
in observing Y . Accordingly, by Lemma 3.6,

Py

(
I
{1

2

∥∥X′XM
(
β̂M − Ey(β̂M)

)∥∥2
2 ≥ ε

9

}
= 0

)
≥ 1 − 3|M|σM

√
$M

√
επe

ε

9σ2
M$M

.

Recall that Py is used to denote the probability measure associated with the sam-
pling distribution of Y . The third term in (14) must be zero by Condition 3.3. !
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PROOF OF THEOREM 3.8. Recall that

h(βMo) = I
{1

2

∥∥X′(XMoβMo − Xb̃min
)∥∥2

2 ≥ ε

}
,

where b̃min solves minb∈Rp
1
2∥X′(XMoβMo −Xb)∥2

2 subject to ∥b∥0 ≤ |Mo|−1. To
show the desired result, let bmin be the solution to minb∈Rp ∥X′(XMoβ

0
Mo

− Xb)∥2
2

subject to ∥b∥0 ≤ |Mo| − 1. Then observe that
∥∥X′(XMoβ

0
Mo

− Xbmin
)∥∥

2 ≤ ∥∥X′(XMoβ
0
Mo

− Xb̃min
)∥∥

2

≤ ∥∥X′XMo

(
β0

Mo
− βMo

)∥∥
2

+ ∥∥X′(XMoβMo − Xb̃min
)∥∥

2.

Note the difference between bmin and b̃min here. The rightmost term is the quantity
of interest because it will become E(h(βMo)) in the next few steps. The term on
the left of the inequality corresponds to the quantity in Condition 3.1.

Adding and subtracting β̂Mo inside the first term on the right-hand side of the
second inequality, and applying the triangle inequality gives

I
{1

2

∥∥X′(XMoβ
0
Mo

− Xbmin
)∥∥2

2 ≥ 9ε

}

≤ P

(1
2

∥∥X′XMo

(
βMo − β̂Mo

)∥∥2
2 ≥ ε

)

+ I
{1

2

∥∥X′XMo

(
β̂Mo − Ey(β̂Mo)

)∥∥2
2 ≥ ε

}
+ E

(
h(βMo)

)
,

and by applying Lemma 3.5,

I
{1

2

∥∥X′(XMoβ
0
Mo

− Xbmin
)∥∥2

2 ≥ 9ε

}

≤ 2
3
2 3pMo σ̂Mo

√
$Mo√

πε(1 − 1
n−pMo

)
e
− ε

18$Mo σ̂2
Mo

+ I
{1

2

∥∥X′XMo

(
β̂Mo − Ey(β̂Mo)

)∥∥2
2 ≥ ε

9

}
+ E

(
h(βMo)

)
,

where the middle term is written as an indicator function because the uncertainty
here comes from βMo . This indicator is 0 by Lemma 3.6 with probability exceeding
(15). Therefore, since Condition 3.1 implies that the indicator on the left side of
the inequality is 1,

1 − 2
3
2 3pMo σ̂Mo

√
$Mo√

πε(1 − 1
n−pMo

)
e
− ε

18$Mo σ̂2
Mo ≤ E

(
h(βMo)

)
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with probability exceeding

(15) 1 − 3pMoσMo

√
$Mo√

επ
e
− ε

9σ2
Mo

$Mo ,

due to the uncertainty in observing Y . !

The following lemma is needed for the proof of the main result, Theorem 3.9.

LEMMA A.1. Assume all conditions and notation of Theorem 3.9, and with-
out loss of generality suppose σ 0

Mo
= 1, where σ 0

Mo
is the true but unknown error

standard deviation. Then the following holds.
Case 1. This case pertains to subsets M with |M| ≤ |Mo|.

Py

(|Mo|⋂

j=1

⋂

Mj

{
Y :

(RSSMo

RSSM

) n−j−1
2 ≤ e−2 log(n)γ log(p)

})

≥ 1 − V1,

where Mj := {M ≠ Mo : |M| = j},

V1 := max
M≠Mo

|M|≤|Mo|

{12|Mo|e
−,M

72 +|Mo| log(p)

√
2π,M

+ |Mo|e−,M
12 +|Mo |

2 +|Mo| log(p)

+ |Mo|e− ξn,|Mo |
48

(n−|Mo |−1),M
log(n)γ log(p)

+ n−|Mo |
2 +|Mo| log(p)

}
,

and ξn,j = 1 − 2 log(n)γ log(p)
(n−j−1)/2 → 1.

Case 2. This case pertains to subsets M with |Mo| + 1 ≤ |M| ≤ nα .

Py

(
nα⋂

j=|Mo|+1

⋂

M:|M|=j

{
Y :

(RSSMo

RSSM

) n−j−1
2 ≤ ee2(nα+j log(p))

})

≥ 1 − V2,

where

V2 := nα

e
bn[2nα− |Mo |

2bn
+(2− 1

bn
− 1

2bn log(p) )(|Mo|+1) log(p)]
+ nαe− n−nα−|Mo |

2 +nα log(p)

√
π(n − nα − |Mo|)

,

and bn := n−nα−|Mo|
n−|Mo|−2 → 1.

Note that V1 and V2 both vanish for large n and p by Condition 3.2. This con-
dition also ensures that ξn,j ∈ (0,1) which is needed in the proof of this lemma.

PROOF OF LEMMA A.1. There are two cases to consider.
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Case 1. For M ∈ Mj with j ≤ |Mo|, let ξn,j = 1 − 2 log(n)γ log(p)
(n−j−1)/2 ∈ (0,1) by

Condition 3.2 for large n and p. Then

Py

((RSSMo

RSSM

) n−j−1
2

> ξ
n−j−1

2
n,j

)

= Py
(
U ′(In − HMo)U/ξn,j > ,M + 2

√
,MZ + U ′(In − HM)U

)
(16)

since by assumption Y = XMoβ
0
Mo

+ U with U ∼Nn(0, In), and so

RSSMo = U ′(In − HMo)U and

RSSM = ,M + 2β0′
Mo

X′
Mo

(In − HM)U + U ′(In − HM)U

= Z,M + U ′(In − HM)U,

where Z,M := ,M + 2
√

,MZ, and Z ∼N(0,1). Recall that ,M := β0′
Mo

×
X′

Mo
(In−HM)XMoβ

0
Mo

. Continuing in (16) by subtracting χ2
n−|Mo| from both sides

of the inequality gives

Py

(RSSMo

RSSM
> ξn,j

)
= Py

(χ2
n−|Mo|
ξn,j

− χ2
n−|Mo| > Z,M + χ2

n−j − χ2
n−|Mo|

)

= Py
(
χ2

n−|Mo|(1/ξn,j − 1) > Z,M + χ2
|Mo| − χ2

j

)

≤ Py
(
χ2

n−|Mo|(1/ξn,j − 1) > Z,M − χ2
j

)
.

(17)

The last inequality follows because the χ2
|Mo| random variable is nonnegative, and

removing it simplifies the remaining argument. Then

Py

(RSSMo

RSSM
> ξn,j

)
≤ Py

(
ξn,jχ

2
j + χ2

n−|Mo|(1 − ξn,j ) − 2ξn,j

√
,MZ > ξn,j,M

)

≤ Py
(|Z| >

√
,M/6

) + Py
(
χ2

j > ,M/3
)

+ Py

(
χ2

n−|Mo| >
ξn,j,M

3(1 − ξn,j )

)
.

For the second and third term, apply the Chernoff bound, and evaluate the moment
generating function for the χ2

j and χ2
n−|Mo| distributions at 1/4. Accordingly,

Py

(RSSMo

RSSM
> ξn,j

)
≤ 2Py(Z < −

√
,M/6) + e−,M

12 + j
2 + e

− ξn,j ,M
12(1−ξn,j )+

n−|Mo |
2 .

Finally, the remaining probability can be controlled by the bound for the CDF

of a standard normal random variable for x > 0, 2(−x) ≤ 1
x
√

2π
e

−x2
2 . Hence,

Py

(RSSMo

RSSM
> ξn,j

)
≤ 12e

−,M
72

√
2π,M

+ e−,M
12 +|Mo |

2 + e
− ξn,|Mo |

48
(n−|Mo |−1),M

log(n)γ log(p)
+ n−|Mo |

2 ,
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where the last inequality follows by observing that j ≤ |Mo|, and recalling the
expression for ξn,j .

Therefore, the probability that (
RSSMo
RSSM

)
n−j−1

2 > ξ
n−j−1

2
n,j is satisfied for some M

with |M| ≤ |Mo| is

Py

(|Mo|⋃

j=1

⋃

Mj

{(RSSMo

RSSM

) n−j−1
2

> ξ
n−j−1

2
n,j

})

≤
|Mo|∑

j=1

(
p

j

)

max
Mj

Py

((RSSMo

RSSM

) n−j−1
2

> ξ
n−j−1

2
n,j

)
.

Note that

(18)

(
p

j

)

= p(p − 1) · · · (p − j + 1)

j ! =
pj (1 − 1

p ) · · · (1 − j−1
p )

j ! ≤ pj .

In fact, Luo and Chen [15] show that if log(j)/ log(p) → δ as p → ∞, for some
δ > 0, then log

(p
j

) = j log(p)(1 − δ)(1 + o(1)). Thus,

Py

(|Mo|⋃

j=1

⋃

Mj

{(RSSMo

RSSM

) n−j−1
2

> ξ
n−j−1

2
n,j

})

≤
|Mo|∑

j=1

max
Mj

{12e
−,M

72 +j log(p)

√
2π,M

+ e−,M
12 +|Mo |

2 +j log(p)

+ e
− ξn,|Mo |

48
(n−|Mo |−1),M

log(n)γ log(p)
+ n−|Mo |

2 +j log(p)
}
.

Since ξn,|Mo| → 1, this bound vanishes by Condition 3.2. Therefore, with proba-
bility exceeding one minus the above bound,

(RSSMo

RSSM

) n−j−1
2 ≤

(
1 − 2 log(n)γ log(p)

(n − j − 1)/2

) n−j−1
2 ≤ e−2 log(n)γ log(p)

uniformly over all M such that |M| ≤ |Mo|.
Case 2. Consider any subset M with |Mo| < |M| ≤ nα for some positive con-

stant α < 1, and let {an} be an arbitrarily sequence of numbers. To begin, repeating
the steps in (17), but subtracting χ2

n−j /ξn,j on both sides instead of χ2
n−|Mo|, and

replacing the label ξn,j with an, yields

Py

((RSSMo

RSSM

) n−j−1
2

> a
n−j−1

2
n

)
≤ Py

(
χ2

j > anZ,M + χ2
n−j (an − 1)

)
,

where Z,M = ,M + 2
√

,MZ, Z ∼N(0,1), and ,M = β0′
Mo

X′
Mo

(In − HM) ×
XMoβ

0
Mo

. Since Mo ⊂ M implies ,M = 0, the above bound can be simplified by
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including in the subset M any covariates in Mo not already included in M . Accord-
ingly, let M ′ := M ∪Mo which includes j + l covariates, where l ∈ {0, . . . , |Mo|} is
the number of covariates not shared by M and Mo. Then because RSSM ′ ≤ RSSM ,

Py

((RSSMo

RSSM

) n−j−1
2

> a
n−j−1

2
n

)
≤ Py

((RSSMo

RSSM ′

) n−j−1
2

> a
n−j−1

2
n

)

≤ Py
(
χ2

j+l > χ2
n−j−l(an − 1)

)
,

and for any nonnegative s ∈ R,

Py

(RSSMo

RSSM
> an

)
≤ Py

({
χ2

j+l > s(an − 1)
} ∩ {

χ2
n−j−l ≥ s

})

+ Py
({

χ2
j+l > χ2

n−j−l(an − 1)
} ∩ {

χ2
n−j−l < s

})

≤ Py
(
χ2

j+l > s(an − 1)
) + Py

(
χ2

n−j−l < s
)
.

(19)

Consider each of these last two terms in turn. For the first term, apply the Cher-
noff bound, and evaluate the moment generating function for the χ2

j+l distribution
at 1/4. That gives

Py
(
χ2

j+l > s(an − 1)
) ≤ 2

j+l
2 e− s(an−1)

4 ≤ e− s(an−1)
4 + j+l

2 .

For the second term in (19), write out the expression to evaluate the probability
explicitly, and then apply the simple bound e−x ≤ 1 for all x ≥ 0. Noting that
s > 0,

Py
(
χ2

n−j−l < s
) ≤ 1

2
n−j−l

2 ((n−j−l
2 )

s
n−j−l

2

n−j−l
2

≤ (e · s) n−j−l
2 · 2− n−j−l

2

√
2π(n−j−l

2 )
n−j−l

2 + 1
2

,

where the last inequality follows from the well-known Sterling lower bound on
the gamma function, ((x) ≥

√
2πxx− 1

2 e−x for x > 0. It is clear from the last
expression that for the probability to vanish, e · s must grow no faster than n−j−l

2 .
Accordingly, choosing s = n−j−l

e2 gives

Py

(
χ2

n−j−l <
n − j − l

e2

)
≤ e− n−j−l

2
√

π(n − j − l)
.

Combining the two bounds for (19) now yields

Py

(RSSMo

RSSM
> an

)
≤ e

−( n−j−l

e2 )an−1
4 + j+l

2 + e− n−j−l
2

√
π(n − j − l)

.

It only remains to choose the smallest an such that the first term in the bound
vanishes exponentially fast so that the cumulative probability will vanish in prob-
ability over all subsets M with |M| ≤ nα . Accordingly, it should become apparent
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shortly that a good choice is

(20) an = 1 + 8e2(nα + j log(p))

n − j − 1
.

The probability that (
RSSMo
RSSM

)
n−j−1

2 > a
n−j−1

2
n is satisfied for some M with |Mo| <

|M| ≤ nα is

Py

(
nα⋃

j=|Mo|+1

⋃

M:|M|=j

{(RSSMo

RSSM

) n−j−1
2

> a
n−j−1

2
n

})

≤
nα∑

j=|Mo|+1

(
p

j

)

max
M:|M|=j

Py

((RSSMo

RSSM

) n−j−1
2

> a
n−j−1

2
n

)
.

Thus, bounding the binomial coefficient as in (18), and substituting (20) for an

yields

Py

(
nα⋃

j=|Mo|+1

⋃

M:|M|=j

{(RSSMo

RSSM

) n−j−1
2

> a
n−j−1

2
n

})

≤
nα∑

j=|Mo|+1

e
−bn[2nα− l

2bn
+(2− 1

bn
− 1

2bn log(p) )j log(p)] + e− n−j−|Mo |
2 +j log(p)

√
π(n − j − |Mo|)

≤ nαe
−bn[2nα− |Mo |

2bn
+(2− 1

bn
− 1

2bn log(p) )(|Mo|+1) log(p)]

+ nαe− n−nα−|Mo |
2 +nα log(p)

√
π(n − nα − |Mo|)

,

where bn := n−nα−|Mo|
n−|Mo|−2 → 1. Note that this bound vanishes by Condition 3.2.

Therefore, with probability exceeding one minus the above bound,

(RSSMo

RSSM

) n−j−1
2 ≤

(
1 + 4e2(nα + j log(p))

n−j−1
2

) n−j−1
2 ≤ e4e2(nα+j log(p)),

uniformly over all M such that |Mo| < |M| ≤ nα . !

PROOF OF THEOREM 3.9. Without loss of generality suppose σ 0
Mo

= 1, where
σ 0

Mo
is the true but unknown error standard deviation. For j ∈ {1, . . . , p}, define

the following classes of subsets Mj := {M ≠ Mo : |M| = j }. Recall that σ̂ 2
M :=

RSSM/(n − |M|). It will first be shown that for any subset of covariates M ≠
Mo the ratio r(M|Y )

r(Mo|Y ) vanishes in probability for large n and p. Accordingly, for
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any M ∈ Mj ,

r(M|Y)

r(Mo|Y)
= π

j−|Mo |
2

((n−j
2 )

((n−|Mo|
2 )

RSS
n−|Mo |−1

2
Mo

RSS
n−j−1

2
M

E(h(βM))

E(h(βMo))

= π
j−|Mo |

2
((n−j

2 )

((n−|Mo|
2 )

(RSSMo

RSSM

) n−j−1
2

RSS
j−|Mo |

2
Mo

E(h(βM))

E(h(βMo))
.

Before proceeding with the rest of the proof, the following notation is needed.
V1 and V2 are as stated in Lemma A.1. As in Theorem 3.8, define

V3 := 3pMoσM
√

$Mo√
επ

e
− ε

9σ2
M$Mo ,

and corresponding to Theorem 3.7, define

V4 :=
nα∑

j=1

∑

M∈Mj

3|M|σM
√

$M√
επ

e
− ε

9σ2
M$M ≤

nα∑

j=1

max
Mj

3|M|σM
√

$M

√
επe

ε

9σ2
M$M

+j log(p)

by bounding the binomial coefficient as in (18). Note that V4 then vanishes by
Condition 3.4. Further, recall that RSSMo ∼χ2

n−|Mo|, so by the Chernoff bound
(evaluating the moment generating function at 1/4),

Py
(
χ2

n−|Mo| > 3
(
n − |Mo|

)) ≤ e− n−|Mo |
4︸ ︷︷ ︸

=:V5

.

With this notation, it is now possible to account for all of the uncertainty due to Y .
Accordingly, by Theorem 3.8, with probability exceeding 1 − V3 − V5,

(21)
r(M|Y)

r(Mo|Y)
≤ ((n−j

2 )

((n−|Mo|
2 )

(RSSMo

RSSM

) n−j−1
2 (3π(n − |Mo|))

j−|Mo |
2 E(h(βM))

1 − g1(Mo,n,p)
,

where

g1(M,n,p) := 2
3
2 3j σ̂M

√
$M√

πε(1 − 1
n−j )

e
− ε

18$M σ̂2
M .

Further, fix A1 ∈ (0,1), and by Condition 3.4 choose n and p sufficiently large so
that g1(Mo,n,p) < A1.

Suppose j ≤ |Mo|. As in Jameson [12], the ratio of gamma functions can be
bounded by

((n−j
2 )

((n−|Mo|
2 )

= ((n−|Mo|
2 + |Mo|−j

2 )

((n−|Mo|
2 )

≤
(

n − |Mo|
2

)(
n − j

2

) |Mo |−j
2 −1

.
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Applying Lemma A.1 to bound the ratio of residual sums of squares, and bounding
the expectation by 1, with probability exceeding 1 − V1 − V3 − V5, (21) implies

(22)
r(M|Y)

r(Mo|Y)
≤ (n−|Mo|

2 )

(n−j
2 )−

|Mo |−j
2 +1

(3π(n − |Mo|))
j−|Mo |

2

(1 − A1)e2 log(n)γ log(p)
≤ e−2 log(n)γ log(p)

1 − A1
,

where the last inequality follows for all n ≥ |Mo|
1− 1

6π

. Since n ≫ |Mo|, assume with-

out loss of generality that n is sufficiently large.
Conversely, suppose |Mo| < j ≤ nα . In this setting, as in Jameson [12], the ratio

of gamma functions can be bounded by

(
((n−j

2 )

((n−|Mo|
2 )

)−1
= ((n−|Mo|

2 )

((n−j
2 )

= ((n−j
2 + j−|Mo|

2 )

((n−j
2 )

≥
(

n − j

2
− 1

) j−|Mo |
2

.

Applying Theorem 3.7 to bound the expectation, and applying Lemma A.1 to
bound the ratio of residual sums of squares, with probability exceeding 1 − V2 −
V3 − V4 − V5, (21) implies

r(M|Y)

r(Mo|Y)
≤ e4e2(nα+j log(p))

(n−j
2 − 1)

j−|Mo |
2

(
3π

(
n − |Mo|

)) j−|Mo |
2

g1(M,n,p)

1 − A1

≤ 2
3
2 3j σ̂M

√
$Me

− ε

18$M σ̂2
M

+4e2(nα+j log(p))+ j−|Mo|
2 log( 6π

1− nα+2
n

)

√
πε(1 − 1

n−j )(1 − A1)
.

(23)

Notice that Theorem 3.7 is being applied here with nα in place of c1n. This can be
done without loss of generality because nα grows slower than c1n, for any choices
of α, c1 ∈ (0,1).

It can now be shown that
∑nα

j=1
∑

M∈Mj

r(M|Y )
r(Mo|Y ) vanishes in probability for

large n and p. Apply the bounds in (22) and (23) in the following argument:

nα∑

j=1

∑

M∈Mj

r(M|Y)

r(Mo|Y)
≤

|Mo|∑

j=1

(
p

j

)

max
M∈Mj

r(M|Y)

r(Mo|Y)
︸ ︷︷ ︸

=:S1

+
nα∑

j=|Mo|+1

(
p

j

)

max
|M|=j

r(M|Y)

r(Mo|Y)
︸ ︷︷ ︸

=:S2

.

Consider S1 and S2 separately.
With probability exceeding 1 − V1 − V3 − V5,

S1 ≤ 1
1 − A1

|Mo|∑

j=1

e−2 log(n)γ log(p)+j log(p) ≤ |Mo|e−(2 log(n)γ −|Mo|) log(p)

1 − A1
,
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by bounding the binomial coefficient as in (18), and with probability exceeding
1 − V2 − V3 − V4 − V5,

S2 ≤ A2

nα∑

j=|Mo|+1

j

1− 1
n−j

max|M|=j (
σ̂ 2

M$M

ε )
1
2

e
min|M|=j { ε

18$M σ̂2
M

−4e2(nα+j log(p))− j−|Mo|
2 log( 6π

1− nα+2
n

)−j log(p)}

≤ A2

n1−α
· max
|Mo|<|M|≤nα

(
σ̂ 2

M$M

ε

) 1
2

for some positive constant A2. The last inequality follows by Condition 3.4.
Thus, for sufficiently large n and p, with probability exceeding 1 − V1 − V2 −

V3 − V4 − V5,

nα∑

j=1

∑

M∈Mj

r(M|Y)

r(Mo|Y)
≤ |Mo|e−(2 log(n)γ −|Mo|) log(p)

1 − A1
+ max|Mo|<|M|≤nα (

σ̂ 2
M$M

ε )
1
2

A−1
2 n1−α

,

which by Conditions 3.1–3.4 vanishes for large n and p. The proof is now com-
plete by noticing that

r(Mo|Y) = r(Mo|Y)
∑nα

j=1
∑

M:|M|=j r(M|Y)
= 1

1 + ∑nα

j=1
∑

Mj

r(M|Y )
r(Mo|Y )

.
!
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