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SUPPLEMENTARY MATERIAL

Supplement to “J. P. Williams and J. Hannig (2019). Nonpenalized vari-
able selection in high-dimensional linear model settings via generalized fidu-
cial inference. TheAnnalsofStatistics 47 (3), 1723-1753.”

S1. Technical details for algorithm computations.

S1.1. Evaluating the model complexity decision function. The purpose of
this section is to provide the technical details for evaluating h(·) as defined in
(4). Algorithm S1.1 which is adapted from Bertsimas, King and Mazumder
(2016) is implemented for this purpose. Following the discussion in Section
2.1, evaluating h(βM ) amounts to solving

min
b∈Rp

g(b) subject to ‖b‖0 ≤ |M | − 1,

with
g(b) =

1

2
‖X ′(XMβM −Xb)‖22.

As discussed in Bertsimas, King and Mazumder (2016), this L0 minimization
problem can be solved for a first-order stationary point with Algorithm S1.1
since g(b) ≥ 0 is convex and has Lipschitz continuous gradient:

∇g(b) = X ′XX ′(Xb−XMβM ) and

‖∇g(b)−∇g(̃b)‖2 ≤ λmax((X ′X)2)‖b− b̃‖2,

where λmax((X ′X)2) is the maximum of the eigenvalues of (X ′X)2.
The basic intuition is to update the solution vector iteratively in a gradient

decent fashion. The cardinality constraint is imposed by only retaining the
|M | − 1 largest in magnitude vector components in the gradient direction,
at every iteration.

Algorithm S1.1. (1) Initialize with some b(0) ∈ Rp with ‖b(0)‖0 ≤
|M |, and set b(1) = b

(0)
−1 where b

(0)
−1 is the vector b(0) with its smallest

component (in absolute value) removed.
(2) For m ≥ 1, set

b
(m+1)
i =

{
ci if i ∈ {(1), . . . , (|M | − 1)}
0 else

, for i ∈ {1, . . . , p},

where

c = b(m) − 1

l
∇g(b(m)) = b(m) − X ′XX ′(Xb(m) −XMβM )

λmax((X ′X)2)
,

and |c(1)| ≥ |c(2)| ≥ · · · ≥ |c(p)|.
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(3) Repeat until one of the following conditions are satisfied.

(i) g(b(m+1)) = 1
2‖X

′(XMβM −Xb(m+1))‖22 < ε, or

(ii) g(b(m))− g(b(m+1)) is arbitrarily small (not in absolute value), or

(iii) Some maximum number of iterations has been exceeded.

S1.2. Setting up the MCMC algorithm. This section serves to provide the
details of pseudo-marginal MCMC from Andrieu and Roberts (2009) used
to compute the subset probabilities, r(M |y) as in (6). Begin by defining

r(M,v|y) := C · π
|M|
2 Γ
(n− |M |

2

)
RSS

−(n−|M|−1
2

)

M h(v),

for some normalizing constant C, which is not a probability density function.
Further, let

rM (v|y) :=
r(M,v|y)QM (v)∫
r(M,v|y)QM (v) dv

denote the conditional density of v given a subset of covariates M , where
QM (v) is the density function associated with the location-scale multivariate
T distribution in (7). Then

(S1)
rM (v|y)

QM (v)

∫
r(M,v|y)QM (v) dv︸ ︷︷ ︸

= r(M |y)

= r(M, v|y).

Lastly, let the columns B(i) of a new matrix B consist of a sample of size
N from distribution (7), and denote the joint density function of the sample
as QN

M (B) :=
∏N

i=1QM (B(i)), by independence. Then, in the convention of
Andrieu and Roberts (2009), the GIMH algorithm has target distribution

rN (M,B|y) := r(M |y) ·QN
M (B) · 1

N

N∑
i=1

rM (B(i)|y)

QM (B(i))

= QN
M (B) · 1

N

N∑
i=1

r(M,B(i)|y),

where the second line is true by (S1). Observe that rN (M,B|y) has the
desired distribution, r(M |y), as its marginal distribution. The results of
Andrieu and Roberts (2009) guarantee that MCMC with target distribution
rN (M,B|y) will produce samples of M according to r(M |y) asymptotically,
as long as N is large enough.

Use M(t) and B(t) to denote the subset of covariates and sample of vectors,
respectively, at step t of the GIMH algorithm. Then at step t+ 1 propose a
new model, M̃ ∼ q(·|M(t)), and a new sample of vectors, B̃ ∼ QN

M̃
(·). This

results in the following acceptance ratio
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ρ(M(t), M̃) = min

 rN (M̃, B̃|y)q(M(t)|M̃)QN
M(t)

(B(t))

rN (M(t), B(t)|y)q(M̃ |M(t))Q
N
M̃

(B̃)
, 1


= min


[

1
N

∑N
i=1 r(M̃, B̃(i)|y)

]
q(M(t)|M̃)[

1
N

∑N
i=1 r(M(t), B(t)(i)|y)

]
q(M̃ |M(t))

, 1

 .

(S2)

The pseudo-code for the constructed MCMC algorithm is presented next.

Algorithm S1.2. Given some subset, M(t), of the p covariates at time
t,

(1) Sample.

M̃ =


M(t) ∪ {a new covariate} w.p. 1

3

M(t) \ {an existing covariate} w.p. 1
3(

M(t) \ {an existing covariate}
)
∪ {a new covariate} w.p. 1

3

where a covariate is added to the subset M(t) with probability w
(t)
j for

j ∈ {1, . . . , p − |M(t)|}, and is dropped from M(t) with probability v
(t)
i

for i ∈ {1, . . . , |M(t)|}. This yields the proposal probability function

q(M̃ |M(t)) =


1
3w

(t)
j if |M̃ | > |M(t)|

1
3v

(t)
i if |M̃ | < |M(t)|

1
3w

(t)
j v

(t)
i if |M̃ | = |M(t)|

,

for j ∈ {1, . . . , p−|M(t)|} and i ∈ {1, . . . , |M(t)|}. The vectors ~w(t) and

~v(t) are vectors of weights depending on M(t), which sum to 1.

Given the proposal M̃ , for k ∈ {1, . . . , N} generate

B̃(k) ∼ t
n−|M̃ |

(
(X ′

M̃
X

M̃
)−1X ′

M̃
y,

RSS
M̃

n− |M̃ |
(X ′

M̃
X

M̃
)−1
)
.

(2) Update.

M(t+1) =

{
M̃ w.p. ρ(M(t), M̃)

M(t) w.p. 1− ρ(M(t), M̃)

where the acceptance ratio is given by ρ(M(t), M̃) as in (S2).

One choice of weights is

w
(t)
j :=

β̂2j∑p−|M(t)|
k=1 β̂2k

, for j ∈ {1, . . . , p− |M(t)|},

and
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v
(t)
i =

β̂−2i∑|M(t)|
k=1 β̂−2k

, for i ∈ {1, . . . , |M(t)|},

where the coefficient estimates are the least squares estimates for the simple
linear regression of each covariate on the response, y, separately. Another
choice of weights could correspond to penalized regression coefficient esti-
mates for the weights, such as those from LASSO. In practice, a well thought
out choice of weights (versus uniform weights) can greatly improve the time
it takes for the algorithm to find the true subset of covariates.
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